期刊文献+

以内外信息相结合的轮式底盘状态预测研究 被引量:2

The Condition Prediction Study of Wheel-type Chassis Based on Internal and External Information
下载PDF
导出
摘要 以底盘外部信息和底盘内部测试信息,分别对轮式底盘进行状态评价,均有各自缺陷,故将底盘外部信息进行定性分析各自权重、对相应总成的内部测试信息进行预处理,然后相结合,利用神经网络建立预测模型,得到较准确的底盘状态概率,为进一步保障提供依据。 Limitation always exists in the wheel-type chassis estimation which is based on exterior information or interior information. By qualitative analyzing each weight, pretreating the testing information of related assembly, combing information, a prediction model based on neural network is built. It gets the more exact probability for wheel-type chassis, and provides basis for further equipment support.
出处 《农业装备与车辆工程》 2012年第6期38-41,共4页 Agricultural Equipment & Vehicle Engineering
关键词 状态预测 轮式底盘 柴油机 神经网络 condition prediction wheel-type chassis diesel engine neural network.
  • 相关文献

参考文献4

二级参考文献23

  • 1张弓,邱容,张永相.基于SIMULINK的汽车发动机怠速模糊神经网络控制[J].小型内燃机与摩托车,2005,34(5):1-4. 被引量:6
  • 2毛三可,毛欣平.逆变弧焊电源电磁干扰防护的探讨[J].电焊机,1996,26(4):11-13. 被引量:7
  • 3H R Nielson. Theory of the Back propagation Neural network[J]. IEEE UCNN, 1989, 1 : 693 -696.
  • 4Martin T Hagan, Howard B Demuth. Mark Beale [ M ]. Neural Network Design, 2002
  • 5楼世博 孙章 陈化成.模糊数学[M].北京:科学出版社,1987..
  • 6SUGENO M.AN.Introductory Survey of Fuzzy Control[J].Information Science,1985,36(1):59-83.
  • 7J.NIE,A.LOH,C.HANG.Fuzzy Modelling of Nonlinear pH Processes Through Neural Approach[C].3rd IEEE Fuzzy Systems,Orlando,1994:1224-1229.
  • 8A.ULTSCH,D.KORUS.Erwerb von Fuzzy-Wissen aus Selbstorganisierenden Neuronalen Netzen[C].3rd GI-Workshop on Fuzzy-Neuro-Systems,Darmstadt,1995:325-332.
  • 9J.J.BUCKLY,Y.HAYASHI,E.CZOGALA.On the Equivalence of Neural Networks and Fuzzy Expert System[C].In Proceedings of International Joint Conference on Nural Networks,Baltimore,1992:691-695.
  • 10王庆斌等.电磁干扰与电磁兼容技术[M]机械工业出版社,1999.

共引文献33

同被引文献18

  • 1Guang-Bin Huang,Qin-Yu Zhu,Chee-Kheong Siew.Extreme learning machine: Theory and applications[J].Neurocomputing.2006(1)
  • 2Manoj Khandelwal,M. Monjezi.Prediction of Backbreak in Open-Pit Blasting Operations Using the Machine Learning Method[J].Rock Mechanics and Rock Engineering.2013(2)
  • 3P. Ilamathi,V. Selladurai,K. Balamurugan,V. T. Sathyanathan.ANN–GA approach for predictive modeling and optimization of NOx emission in a tangentially fired boiler[J].Clean Technologies and Environmental Policy.2013(1)
  • 4Slavica Marinovi?,Marko Kri?tovi?,Branka ?pehar,Vinko Rukavina,Ante Juki?.Prediction of diesel fuel properties by vibrational spectroscopy using multivariate analysis[J].Journal of Analytical Chemistry.2012(12)
  • 5Beno?t Frénay,Michel Verleysen.Parameter-insensitive kernel in extreme learning for non-linear support vector regression[J].Neurocomputing.2011(16)
  • 6Ali Azadeh,Najme Neshat,Afsaneh Kazemi,Mortezza Saberi.Predictive control of drying process using an adaptive neuro-fuzzy and partial least squares approach[J].The International Journal of Advanced Manufacturing Technology.2012(5)
  • 7张培林,徐超,任国全,傅建平,李兵.基于多维时间序列模型的内燃机磨损状态预测研究[J].润滑与密封,2010,35(6):37-40. 被引量:7
  • 8王惜慧,黄正展,赵荣超,黄旭为,刘玹.柴油机EGR温度的智能控制策略[J].华南理工大学学报(自然科学版),2011,39(1):147-151. 被引量:2
  • 9冯广斌,吴震宇,袁惠群.基于混沌理论与SVM的内燃机振动信号趋势预测[J].振动.测试与诊断,2011,31(1):64-69. 被引量:13
  • 10Lv Shi-gui Yang Li Yang Qian.Research on the applications of infrared technique in the diagnosis and prediction of diesel engine exhaust fault[J].Journal of Thermal Science,2011,20(2):189-194. 被引量:8

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部