期刊文献+

羰基还原酶产生菌Candida ontarioensis制备(R)-2-氯-1-(3-氯苯基)乙醇 被引量:1

Asymmetric synthesis of(R)-2-chloro-1-(3-chlorophenyl)ethanol by carbonyl reductase-producing strain Candida ontarioensis
下载PDF
导出
摘要 从实验室保藏的菌株中筛选获得Candida sp.PT2A,并通过18S rRNA鉴定为安大略假单胞菌Candida on-tarioensis。对C.ontarioensis不对称还原合成(R)-2-氯-1-(3-氯苯基)乙醇的发酵产酶条件和转化条件进行优化,确定了最适的发酵产酶条件和转化条件:温度30℃,初始pH 6.5,摇床转速180 r/min,菌体质量浓度200 g/L。采用2-氯-1-(3-氯苯基)乙酮质量浓度为10 g/L时,还原反应72 h,(R)-2-氯-1-(3-氯苯基)乙醇的e.e.值为99.9%,产率为99%;底物质量浓度提高至30 g/L时,产率下降为84.3%。采用十六烷基三甲基溴化铵(CTAB)对C.ontarioensis细胞进行通透性处理(CTAB g/L,4℃下处理20 min),在30 g/L底物下反应24 h,产物的e.e.和产率分别达到99.9%和97.5%。 A carbonyl reductase-producing strain Candida sp. FlEA was selected from strain collection of our laboratory and was identified as Candida ontarioensis by 18S rRNA sequencing. The fermentation conditions and bioreduction conditions for the asymmetric synthesis of (R)-2-chloro-1-(3-chlorophenyl) ethanol by Candida ontarioensis were optimized as temperature of 30 ℃ , initial pH of 6.5, rotation speed of 180 r/rain, and cell concentration of 200 g/L. After for 72 h reaction, the e. e. and the product yield were 99.5% and 99% , respectively on substrate concentration of 10 g/L, whereas the yield was dropped to 84.3% on enhanced substrate concentration of 30 g/L. Using C. ontarioensis whole cells pretreated with 4 g/L CTAB for 20 min at 4 ℃, the product e. e. and the yield reached 99.9% and 97.5% on substrate concentration of 30 g/L at shortened reaction time of 24 h.
出处 《生物加工过程》 CAS CSCD 2012年第3期17-22,共6页 Chinese Journal of Bioprocess Engineering
基金 国家重点基础研究发展计划(973计划)资助项目(BK2011150) 江苏省自然科学基金资助项目(SBK201122445) 教育部新世纪优秀人才计划资助项目(NCET-11-0658)
关键词 不对称还原 CANDIDA ontarioensis CTAB (R)-2-氯-1-(3-氯苯基)乙醇 通透性处理 asymmetric reduction Candida ontarioensis cetyhrimetylammonium bromide (CTAB) permeability (R) -2-chloro-1- (3-chlorophenyl) ethanol
  • 相关文献

参考文献17

  • 1Harada H,Hirokawa Y,Suzuki K, et al. Novel and potent human and rat/33-adrenergic receptor agonists containing substituted 3- indolylalkylamines[ J ]. Bioorg Med Chem Lett, 2003,13 ( 7 ) : 1301-1305.
  • 2Patel R N. Synthesis of chiral pharmaceutical intermediates by biocatalysis[ J]. Coordination Chem Rev,2008,252:659-701.
  • 3Pabel J, Hofner G,Wanner K T. Synthesis and resolution of race- mic eliprodil and evaluation of the enantiomers of eliprodil as NMDA receptor antagonists [ J ]. Bioorg Med Chem Lett, 2000, 10(12) :1377-1380.
  • 4Pollard D J, Woodley J M. Biocatalysis for pharmaceutical interme- diates : the future is now [ J ]. Trends Biotech ,2007,25 ( 2 ) : 66 -73.
  • 5Woodley J M. New opportunities for biocatalysis : making pharma- ceutical processes greener [ J]. Trends Biotech, 2008,26 ( 6 ) : 321-327.
  • 6Zhang W, Ni Y, Sun Z H, et al. Biocatalytic synthesis of ethyl (R) -2-hydroxy-4-phenylbutyrate with Candida krusei SW2026 : a practical process for high enantiopurity and product titer[ J]. Proc Biochem ,2009,44 : 1270-1275.
  • 7de Carvalho C. C. Enzymatic and whole cell catalysis:finding new strategies for old processes[ J]. Biotech Adv ,2011,29:75-83.
  • 8Wohlgemuth R. Asymmetric biocatalysis with nficrobial enzymes and cells[ J]. Curr Opin Microb ,2010,13:283-292.
  • 9Devocelle M, Mortreux A, Agbossou F, et al. Ahemative synthesis of the chiral atypical fl-adrenergic phenylethanol aminotetraline agonist SR58611A using enantioselective hydrogenation [ J ]. Tet- rahedr Lett, 1999,40 : 4551-4554.
  • 10Sawa I,Konishi Y, Maemoto S, et al. Process for producing opti- cally active (-) -2-halo-1 - ( substituted phenyl ) ethanol and (-) - substituted styrene oxide : EP ,0493617 [ P]. 1992-08-07.

二级参考文献15

  • 1洪解放,张敏华,刘成,邹少兰,吴经才.代谢木糖生产乙醇的基因工程菌研究进展[J].食品与发酵工业,2005,31(1):114-118. 被引量:16
  • 2吴飞,陈红英,胡承,张文学,沈才洪,徐勇,樊林,张宿义,刘向阳.浓香型白酒糟醅中可培养酵母18S rDNA全序列的系统学分析[J].酿酒科技,2006(4):23-25. 被引量:19
  • 3Beatriz palmarola-Adrados et al., Ethanol production from non-starch carbohydrates of wheat bran [J]. Bioresource Technology 96 (2005) 843-850.
  • 4Olena B. Ryabova et al., Xylose and cellobiose fermentation to ethanol by the thermotolerant methylotrophic yeast Hansenula polymorpha [J]. Yeast Research 4 (2003) 157-164.
  • 5J. N, Nigam. Ethanol production from wheat starw hemieellulose hydrolysate by Pichia stipitis [J], Journal of Biotechnology 87, (2001) 17-27.
  • 6J. N. Nigam. Bioconversion of water-hyacinth (Eichhomia crassipes) hemicellulose acid hydrolysate to motor fuel ethanol by xylose-fermenting yeast[J]. Journal of Biotechnology 97, (2002) 107-116.
  • 7Thomas W Jeffriesetal, Genomesequenceofthelignocellulose-bioconverting andxylose-fermentingyeaslPichiastipitis[J].NatureBiotechnology,2007,25(3):319-326
  • 8Shekar Govindaswamy, Leland M. Vane. Kinetice of growth and ethanol production on different carbon substrates using genetically engineered xylose-fermenting yeast[J]. Bioresource Technology 98 (2007)677-685.
  • 9Steve s. Helle et al., Xylose fermentation by genetically modified Saccharomyces cerevisiae 259ST in spent sultlte liquor [J]. Bioresource Technology 92 (2004) 163-171.
  • 10KG de Carvalho Lima et al., Ethanol production from corn cob hydrolysates by Escherichia coli KO11 [J]. Journal of Industrial Microbiology & Biotechnology (2002) 29,124 - 128.

共引文献4

同被引文献10

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部