摘要
通过分析未扰系统的同宿轨在小扰动下的稳定流形和不稳定流形之间的相对位置,研究了一类二次微分方程的极限环的存在性问题,给出了系统存在唯一稳定或者不稳定极限环的条件.
In this paper , by analyzing the relative position of the stable manifold and the unstable manifold for the unperturbat- ed system under small perturbation , the author studied the problems of limit cycles bifurcated from the homoclinic orbit for the type (III) equation of planar quadratic differential systems. The conditions were given to ensure the system has stable limit cy- cle and unstable limit cycle , respectively.
出处
《枣庄学院学报》
2012年第2期42-46,共5页
Journal of Zaozhuang University
基金
国家自然科学基金(10671069)
山东省自然科学基金(Y2007A17)资助课题
关键词
同宿轨
流形
环域定理
分支
极限环
homoclinic orbit
manifold
annular region theore
bifurcation
limit cycle