期刊文献+

矩形腔反向驱动流流型分析与数值模拟 被引量:1

Streamline Pattern Analysis and Numerical Simulation of Rectangular Cavity Driven Flows with Two opposite Moving Walls
下载PDF
导出
摘要 研究了矩形腔双壁等速反向驱动流涡结构特性。采用非线性动力学方法,对远离边界的二维不可压缩流动线性退化奇点进行了分析,分别获得了正形四阶和正形六阶的局部流型和分岔;采用计算流体动力学方法,对不同深宽比矩形腔上下壁反向驱动低雷诺数流动进行了数值模拟,给出了涡结构演化过程中的临界深宽比、流型及其分岔图。数值模拟结果揭示出随深宽比的增加,腔内流型具有周期性和自相似性的变化特征。由鞍点和中心构成的局部流型在低雷诺数流动中是实际存在的。 Vortex structure of the two-dimensional incompressible flow in a rectangular cavity with two equal speed and opposite moving walls was considered.Streamline patterns and their bifurcations near linear degeneracy critical point away from boundaries were investigated using method from nonlinear dynamics.The local streamline patterns and bifurcation diagrams for normal forms of order four and order six were obtained respectively.Low Reynolds number flow in a rectangular cavity with two moving walls in opposite directions and different aspect ratios was numerated using computational fluid dynamics method.The critical aspect ratios,streamline patterns and bifurcation diagrams were proposed.Numerical simulation shows that the evolution of flow pattern unfolds the characteristics of periodicity and self-similarity with aspect ratio increasing.The local streamline patterns consisting of centers and saddle points can be realized in low Reynolds number flows.
出处 《系统仿真学报》 CAS CSCD 北大核心 2012年第6期1170-1174,共5页 Journal of System Simulation
基金 国家自然科学基金(51149013 50839003)
关键词 矩形腔驱动流 奇点 分岔 涡结构 rectangular cavity driven flow critical point bifurcation vortex structure
  • 相关文献

参考文献17

  • 1Aidum CN, Triantafillopoulos NG, Benson JD. Numerical Study of Viscous Flow in a Cavity [J]. Phys. Fluids A (S1070-6631), 1991, 3: 2081-2091.
  • 2Gaskell PH, Savage MD. Meniscus Roll Coating. In Liquid Film Coating [M]. New York, USA: Chapman & Hall, 1996: 573-597.
  • 3Helebrand H. Tape Casting. In Processing of Ceramics Part I [M]. Weinheim, Germany: VCR Publisher, 1996.
  • 4Downson D, Taylor CM. Cavitation in Bearing [J]. Ann. Rev. Fluid. Mech. (S0066-4189), 1979, 11: 132-143.
  • 5Harper JF, Wake GC. Stokes Flow between Parallel Plates due to a Transversely Moving End Wall [J]. IMA J. Appl. Math. (S0272~960), 1983, 30: 141-149.
  • 6Joseph DD, Sturges L. The Convergence of Biorthogonal Series for Biharmonic and Stokes Flow Edge Problems: Part II [J]. SIAM. J. Appl. Math. (S0036-1399), 1978, 34: 7-27.
  • 7hankar, PN. The Eddy Structure in Stokes Flow in a Cavity [J]. J. Fluid. Mech. (S0022-1120), 1993, 250: 371-383.
  • 8allmann U. Three-dimensional Vortex Structures and Vorticity Topology [J]. Fluid Dyn. Res. (S0169-5983) 1988, 3: 183-192.
  • 9Chiang TP, Sheu TWH, Tsai SF. Topological Flow Structures in backward-facing Step Channels [J]. Comput. Fluids (S0045-7930), 1997, 321(26): 211-220.
  • 10Gurcan F Deliceogu A. Saddle Connections near Degenerate Critical Points in Stokes Flow within Cavities [J]. Applied Mathematics and Computation (S1598-5857), 2006, 172:1133-1144.

二级参考文献33

  • 1张立翔,徐天茂,张洪明.振动边界耦合作用下基于微分求积法的三维不可压缩粘性流体的数值模拟[J].水动力学研究与进展(A辑),2005,20(2):196-206. 被引量:4
  • 2徐天茂,张立翔,何士华.基于微分求积法的三维非恒定、不可压N-S方程的数值计算模型[J].昆明理工大学学报(理工版),2005,30(4):63-68. 被引量:7
  • 3Shankar P N,Deshpande M D.Fluid mechanics in the driven cavity[J].Ann Rev Fluid Mech,2000,32:93-136.
  • 4Robert N M,Pavageau M,Rafailidis S,Schatzmann M.Study of line source characteristics for 2-D physical modeling of pollutant dispersion in street canyons[J].Journal of Wind Engineering and Industrial Aerodynamics,1996,62:37-56.
  • 5Ghia U,Ghia K N,Shin C T.High-Re solutions for incompressible flow using the Navier Stokes equations and a multi-grid method[J].J Comput Phys,1982,48:387-411.
  • 6Schreiber R,Keller H B.Driven cavity flows by efficient numerical techniques[J].J Comput Phys,1983,49:165-172.
  • 7Xu H,Zhang C,Barron R.Numerical simulation of cavity flows based on transformed equations[J].Applied Mathematics and Computation,2006,176:506-515.
  • 8Bruneau C H,Saad M.The 2D lid-driven cavity problem revisited[J].Computers & Fluids,2006,35:326-348.
  • 9Fairag F A.Analysis and finite element approximation of a Ladyzhenskaya model for viscous flow in stream-function form[J].Journal of Computational and Applied Mathematics,2007,206:374-391.
  • 10Cheng M,Hung K C.Vortex structure of steady flow in a rectangular cavity[J].Computers & Fluids,2006,35:1046-1062.

共引文献9

同被引文献7

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部