期刊文献+

考虑决策风险偏好的自适应支持向量机模型

Adaptive Support Vector Machines Considering Decision-making Risk Preference
下载PDF
导出
摘要 在构造可以控制不平衡性的分类器,准确识别少数类,并使得决策者可以根据风险偏好与分类器进行交互,这对于人工智能在管理实践中的应用有极为重要的价值。提出了一种自适应支持向量机(ASVM)模型,使得类间隔最大化的同时,决策损失最小化,并基于粒子群优化算法(PSO)调节参数。该模型内在地考虑了数据不平衡性,并可为决策者与分类器的交互提供有效支持。实验及仿真结果表明,该模型在各种样本不平衡情况下都有很好性能,分类准确率显著地优于对比方法,而且相对稳定,并能很好地根据决策者的偏好控制分类器的决策风险。 This study aims to construct a classifier that can control the imbalance,identify minority class accurately,and make the decision maker be able to interact with the classifiers according to his own risk preference.It is of great value for the application of artificial intelligence in the management practice.This study proposed an adaptive support vector machine(ASVM) model,which minimized the decision-making cost while maximizing the margin between two classes,and adjusted parameters using the particle swarm optimization(PSO) approach.The model considered the imbalance of the datasets intrinsically,and provided effective support for decision maker interacting with the classifier.The experiment and simulation results demonstrate that the developed method has good performance in sample-imbalanced situation,its classification accuracy rate surpasses the comparative method evidently,and it is more stable than the latter.The developed method can control the decision-making cost very well.
出处 《系统仿真学报》 CAS CSCD 北大核心 2012年第6期1200-1206,共7页 Journal of System Simulation
基金 国家863计划重点项目(2008AA042302)
关键词 支持向量机 不平衡数据 仿真 决策风险偏好 support vector machines imbalanced datasets simulating decision-making risk preference
  • 相关文献

参考文献21

  • 1Jain BA, Nag BN. Performance evaluation of neural network decision models [J]. Manage Inf Syst (S0742-1222: 1997, 14(2): 201-216.
  • 2Chris Seiffert, Taghi M. Improving Software-Quality Predictions with Data Sampling and Boosting [J]. IEEE Transactions on Systems, Man, and Cybemetics Part A: Systems and Humans (S1083-4427, 2009, 39(6): 475-483.
  • 3Ma Y, Cukic B. Adequate and precise evaluation of quality models in software engineering studies [C]//Proc. 3rd Int. Workshop Predictor Models Softw. Eng. New York, USA: Association for ComputingMachinery, 2007: 1-9.
  • 4Sotiris Kotsiantis, Dimitris KaneUopoulos, Panayiotis Pintelas. Handling imbalanced datasets: A review [J]. GESTS International Transactions on Computer Science and Engineering (S1453-2277), 2006, 30(3): 457-468.
  • 5Kotsiantis S, Pintelas P. Mixture of Expert Agents for Handling Imbalanced Data Sets [J]. Annals of Mathematics, Computing & Teleinformatics (S1109-9305, 2003, 1(1): 46-55.
  • 6Weiss G Mining with rarity: A unifying framework [J]. SIGKDD Explorations (S1088-467X), 2004, 6(1): 7-19.
  • 7Vapnik V. The Nature of Statistical Learning Theory [M]. NY, USA: Springer, 1995.
  • 8Stefan Lessman. Solving imbalanced classification problems with support vector machines [C]// Proc. of the Int. Conf. on Artificial Intelligence, 2003. Hamburg, Germany: University of Hamburg, 117-123.
  • 9Burges C. A tutorial on support vector machines for pattern recognition [J]. Data Mining and Knowledge Discovery (S1434-9922), 1998, 2(5): 121-167.
  • 10Wu G~ Chang E. Class-Boundary Alignment for Imbalanced Dataset Learning [R]//ICML 2003 Workshop on Learning from Imbalanced Data Sets II, Washington, DC, USA. 2003: 3216-3220.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部