期刊文献+

基于子波变换的多传感器最优信息融合估计 被引量:3

WAVELET-BASED Multi-sensor Optimal Information Fusion Estimate
下载PDF
导出
摘要 在线性最小方差最优信息融合准则下,提出了一种新的修正加权融合准则。在此基础上,结合子波域多尺度分解理论,构建了子波域多尺度多传感器按修正加权最优信息融合方法。该方法由于采用了修正的加权融合准则和子波域多尺度分解,提高了融合精度,减少了计算负担,便于实际应用。两个典型运动的仿真例子说明了其有效性。 Based on the optimal information fusion rule in the mean of linear minimum variance,a new kind of improved weighted fusion rule was proposed.In addition,combining multiscale analysis in wavelet domain,a kind of multi-sensor optimal information fusion in wavelet domain was built.It is the introduction of improved weighted fusion rule and multiscale decomposition,and the fusion performance,including precision and complexity,has been improved than matrix-weighted in time domain.An example of radar tracking illuminates its usefulness.
出处 《系统仿真学报》 CAS CSCD 北大核心 2012年第6期1265-1269,共5页 Journal of System Simulation
基金 总装预研基金项目(9140C4602041001) 国家自然科学基金(60304007) 航空科学基金(20075157007)
关键词 修正加权融合 子波域 多尺度 多传感器融合 improved weighted fusion wavelet domain multiscale analysis multi-sensor fusion
  • 相关文献

参考文献9

  • 1Martin E Liggins, David L Hall, James Llinas. Handbook of Multisensor Data Fusion: Theory and Practice [K]. 2 Ed. 2008, Boca Raton, FL, USA: CRC.
  • 2Li X R, Yunmin Zhu, Jie Wang, Chongzhao Han. Optimal linear estimation fusion I Unified fusion rules [J]. IEEE Trans. Information Theory (S0018-9448), 2003, 49(9): 2192-2208.
  • 3Zhansheng Duan, Li X R. Lossless Linear Transformation of Sensor Data for Distributed Estimation Fusion [J]. IEEE Transactions on Signal Processing (S1053-587X), 2011, 59(1): 362-372.
  • 4Sun Shu-Li, Deng Zi-Li. Multi-sensor optimal information fusion Kalman filter [J]. Automatiea (S0005-1098), 2004, 40(6): 1017-1023.
  • 5关学慧,邓自立,石莹.自校正集中式融合信息滤波器[J].科学技术与工程,2010,10(2):372-376. 被引量:3
  • 6Chou K C, Golden S, Willsky A S. Modeling and Estimation of Multisacle Soehastie Processes [C]// Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, 1991. USA: IEEE, 1991: 1709-1712.
  • 7Hong Long. Multiresolutional filtering using wavelet transform [J]. IEEE Trans. on Aerospace and Electronic Systems (S0018-9251), 1993, 29(4): 1244-1251.
  • 8Peter Hlinomaz, Lang Hong. A multi-rate multiple model track- before-detect particle filter [J]. Mathematical and Computer Modelling, 2009, 49(1/2): 146-162.
  • 9孙书利,崔平远.多传感器标量加权最优信息融合稳态Kalman滤波器[J].控制与决策,2004,19(2):208-211. 被引量:52

二级参考文献2

共引文献53

同被引文献19

  • 1潘泉,于昕,程咏梅,张洪才.信息融合理论的基本方法与进展[J].自动化学报,2003,29(4):599-615. 被引量:183
  • 2Zhang J, Wu Z. Hrirs' Adaptive Non-Linear Approximation Model Based on Wavelet Transformation [C]//2005 IEEE 7th Workshop on Multimedia Signal Processing. USA: IEEE, 2005: 1-4.
  • 3Premaratne P, Premaratne M. Image Similarity Index Based on Moment Invariants of Approximation Level of Discrete Wavelet Transform [J]. Electronics Letters (S0013-5194), 2012, 48(33): 1465-1467.
  • 4Plonka G, Tenorth S, Rosca D. A New Hybrid Method for Image Approximation Using the Easy Path Wavelet Transform [J]. IEEE Transactions on Image Processing (S1057-7149), 2011, 20(2): 372-381.
  • 5徐蕾,王执铨,刘洁,等.基于小波级数模型的非线性系统模型参考自适应辨识[C]//中国智能控制会议论文集.西安:1997:130-134.
  • 6Tiano A, Sutton R, Lozowicki A, et al. Observer Kalman Filter Identification of an Autonomous Underwater Vehicle [J]. Control Engineering Practice (S0967-0661), 2007, 15(6): 727-739.
  • 7Fossen T I. Guidance and Control of Ocean Vehicles [M]. England: John Wiley & Sons Ltd., 1994.
  • 8Zand J. Enhanced Navigation and Tether Management of Inspection Class Remotely Operated Vehicles [D]. British Columbia, Canada: University of Victoria, 2009.
  • 9张铭钧,胡明茂,徐建安.基于稳态自适应技术的水下机器人系统在线辨识[J].系统仿真学报,2008,20(18):5006-5009. 被引量:6
  • 10周雪梅,苏丽,吴俊伟.多尺度递归融合估计在组合导航系统中的应用[J].中国惯性技术学报,2009,17(1):59-62. 被引量:3

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部