期刊文献+

非线性系统规律的动态可视化方法 被引量:2

Dynamic Visualization Method for Law of Nonlinear System
下载PDF
导出
摘要 随着对非线性系统的深入研究,人们发现生活中大量现象内部存在着复杂的非线性作用机制,单纯依靠抽象思维去发现和理解事物背后的规律越来越困难。为了展现非线性系统数据流中的内在规律信息,以相空间重构和流形学习算法为基础,提出一种非线性系统规律分析可视化方法。在此基础上,通过改进只能处理静态时序数据的算法,提出针对数据流信息的可视化方法,用于动态展示非线性系统的变化规律。最后通过仿真实验,说明该方法可以有效的可视非线性系统规律信息,辅助人们认知和分析事物发展趋势。 With the intensive study of nonlinear system,people have learned that complex nonlinear mechanism existed in the interior of most phenomenon of world.Only relying on the abstract thought to understand law of things makes us feel more difficulty than ever before.In order to show the information laws hidden in the data stream of nonlinear system,based on the phase space reconstruction and manifold learning algorithm,a visualization method for analyzing the inherent law of nonlinear system was proposed;On this basis,the algorithm was improved which could only deal with the static time series data,a visualization method based on data stream was put forward,and the development trend of the law of nonlinear systems was dynamically displayed.After simulation,the results show that the approach can support people's understanding efficiently and analysis of nonlinear system.
出处 《系统仿真学报》 CAS CSCD 北大核心 2012年第6期1287-1292,共6页 Journal of System Simulation
基金 国家自然科学基金(61070124) 合肥工业大学自主创新项目(2012HGZY0017) 安徽省自然科学基金项目(1208085MF107)
关键词 非线性系统 相空间重构 数据流 流形学习 可视化 nonlinear system phase space reconstruction data stream manifold theory visualization
  • 相关文献

参考文献17

  • 1朱扬勇,戴东波,熊赟.序列数据相似性查询技术研究综述[J].计算机研究与发展,2010,47(2):264-276. 被引量:13
  • 2Kantz Holger, Schreiber Thomas. Nonlinear Time Series Analysis [M]. Cambridge, UK: Cambridge University Press, 1997, 39.
  • 3王东升,曹磊.混沌、分形及其应用[M].合肥:中国科学技术出版社,1995:93-99.
  • 4Floris Takens. Detecting strange attractors in turbulence [J]. Lecture Notes in Mathematics (S0075-8434), 1981, 898(1): 366-381.
  • 5H SKim, R Eykholt, J. D. Salas. Nonlinear dynamics, delay times, and embedding windows [J]. Physica D (S0167-2789), 1999, 127(1/2): 48-60.
  • 6Peter Grassberger, Itamar Procaccia. Measuring the strangeness of strange attractors [J]. Physica D (S0167-2789), 1983, 9(1-2): 189-208.
  • 7Tenenbaum J B, de Silva V, Langford J C. A Global Geometric Framework for Nonlinear Dimensionality Reduction [J]. Science (S0036-8075), 2000, 290(5500): 2319-2323.
  • 8Lin Tong, Zha Hongbin. Riemannian Manifold Learning [J]. IEEE Trans. Pattern Analysis and Machine Intelligence (S0162-8828), 2008, 30(5): 796-809.
  • 9Zhao Dongfang, Yang Li. Incremental Isometric Embedding of High-Dimensional Data Using Connected Neighborhood Graphs [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence (S0162-8828), 2009, 31(1): 86-98.
  • 10Law Martin H C, Jain Anil K. Incremental nonlinear dimensionality reduction by manifold learning [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence (S0162-8828), 2006, 28(3): 377-391.

二级参考文献103

共引文献102

同被引文献17

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部