期刊文献+

基于特征双重加权支持向量机的放大器性能综合评价研究

An comprehensive evaluation of amplifier performance based on feature double weighted support vector machine
下载PDF
导出
摘要 本文针对于现有放大器评价方法的人为因素过大或是成本过高等状况,而提出了基于特征双重加权支持向量机的放大器性能综合评价方法。确定了放大器性能的综合评价系统结构,以高校模拟电子技术实验为依托,采用近一年内由幅频特性测试仪测评所得相关放大器的四项指标构建训练集,然后进行特征双重加权支持向量机的四分类评价。实验表明,该方法优于传统的方法,提高了参数测量的精度,可推广于电子产品的综合性能评价中去。 A novel performance comprehensive evaluation scheme based on feature double weighted support vector machine (FDWSVM) is presented since there exist some problems appeared in the existence evaluation approaches such as artificial factors and higher cost etc. The system structure of the comprehensive evaluation is confirmed firstly. To verify the well property of the proposed method, data acquisition rely on the college analog electronic technology experiments and adopt four indexes of the amplifier performance obtained via amplitude-frequency tester in one year to construct training set. And then the four classifier evaluation actuator based on FDWSVM is generated. Experiment results show that this method is better than the traditional method, such as higher parameters measurement accuracy. And this scheme is applicable to the comprehensive performance evaluation of electronic products.
作者 张爱华
机构地区 渤海大学工学院
出处 《电路与系统学报》 CSCD 北大核心 2012年第3期77-82,共6页 Journal of Circuits and Systems
基金 辽宁省教育厅支持项目(2009A045)
关键词 特征双重加权支持向量机 放大器 性能综合评价 分类器 FDWSVM amplifier performance comprehensive evaluation classifier
  • 相关文献

参考文献12

  • 1赵晖,荣莉莉.支持向量机组合分类及其在文本分类中的应用[J].小型微型计算机系统,2005,26(10):1816-1820. 被引量:7
  • 2Lin C F, Wang S D. Fuzzy support vector machines [J]. IEEE Trans. on Neural Networks, 2002, 13(2): 464-471.
  • 3李洁,高新波,焦李成.基于特征加权的模糊聚类新算法[J].电子学报,2006,34(1):89-92. 被引量:114
  • 4Quinlan J R. Induction of decision tree [J]. Machine Learning, 1986, 1(1): 81-106.
  • 5Wang Xizhao, Wang Yadong, Wang Lijuan. Improving fuzzy c-means clustering based on feature-weight learning [J]. Pattern Recognition Letters, 2004, 25(10): 1123-1132.
  • 6Han Jiawei and Kamber M. Data Mining: Concepts and Techniques [M]. Second Edition. Beijing: China Machine Press, 2006. 296-300.
  • 7Zhan Yan, Chen Hao, Hang Guochun. An optimization algorithm of K-NN classifier [A]. Proceedings of the Fifth International Conference on Machine Learning and Cybernetics [C]. Dalian, China, 2006. 2246-2251.
  • 8Vapnik V. The Nature of Statistical Learning Theory [M]. New York: SpringerVerlag, 1995.91-188.
  • 9范昕炜,杜树新,吴铁军.可补偿类别差异的加权支持向量机算法[J].中国图象图形学报(A辑),2003,8(9):1037-1042. 被引量:26
  • 10Cristianini N, Shawe-Taylor J. An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods [M]. Cambridge: Cambridge University Press, 2000. 47-98.

二级参考文献48

  • 1赵晖,荣莉莉.支持向量机组合分类及其在文本分类中的应用[J].小型微型计算机系统,2005,26(10):1816-1820. 被引量:7
  • 2李洁,高新波,焦李成.基于特征加权的模糊聚类新算法[J].电子学报,2006,34(1):89-92. 被引量:114
  • 3张翔,肖小玲,徐光祐.基于样本之间紧密度的模糊支持向量机方法[J].软件学报,2006,17(5):951-958. 被引量:84
  • 4Vapnik V. The Nature of Statistical Learning Theory. New York: SpringerVerlag, 1995: 91-188.
  • 5Cristianini N and Shawe-Taylor J. An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods. Cambridge: Cambridge University Press, 2000: 47-98.
  • 6Lin C F and Wang S D. Fuzzy support vector machines. IEEE Trans. on Neural Networks, 2002, 13(2): 464-471.
  • 7Zhan Yan, Chen Hao, and Hang Guochun. An optimization algorithm of K-NN classifier. Proceedings of the Fifth International Conference on Machine Learning and Cybernetics, Dalian, China, 2006: 2246-2251.
  • 8Wang Xizhao, Wang Yadong, and Wang Lijuan. Improving fuzzy c-means clustering based on feature-weight learning. Pattern Recognition Letters, 2004, 25(10): 1123-1132.
  • 9Quinlan J R. Induction of decision tree. Machine Learning, 1986, 1(1): 81-106.
  • 10Han Jiawei and Kamber M. Data Mining: Concepts and Techniques: Second Edition. Beijing: China Machine Press, 2006: 296-300.

共引文献257

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部