期刊文献+

基于原生熵的Logistic映射复杂性分析

On the complexity of Logistic map based on primitive entropy
下载PDF
导出
摘要 在序列原生生成过程的基础上,提出了原生熵的概念来分析离散混沌映射的复杂性。先对实值混沌映射量化成二值混沌序列,然后计算其原生熵的大小,并以Logistic映射为例证明了此算法的有效性。仿真结果表明此方法能反映离散混沌系统的随机本质,可用于准确度量离散混沌系统的复杂性强弱,且计算简单。 The notion of primitive entropy is proposed, which is based on primitive production process of a sequence, to measure the complexity of discrete chaotic maps. Real chaotic map is firstly quantified into binary chaotic sequence, and then its primitive entropy is ebtained. As an example, Logistic map is given to indicate that the algorithm is effective. Simulation results show that the approach can describe the random essence of discrete chaotic system and can be used to measure the complexity of discrete chaotic maps with simple computation.
出处 《电路与系统学报》 CSCD 北大核心 2012年第3期98-101,共4页 Journal of Circuits and Systems
基金 广东省科技计划项目(2011B080701092) 国家自然科学基金(51003035)
关键词 混沌 LOGISTIC映射 复杂性 原生熵 chaos Logistic map complexity primitive entropy
  • 相关文献

参考文献12

  • 1Kwok H S, Tang W S. A fast image encryption system based .on chaotic maps with finite precision representation [J]. Chaos, solitons & fraetals, 2007, 32: 1518-1529.
  • 2盛利元,曹莉凌,孙克辉,闻姜.基于TD-ERCS混沌系统的伪随机数发生器及其统计特性分析[J].物理学报,2005,54(9):4031-4037. 被引量:37
  • 3Kolmogorov A N, Three approaches to the quantitative definition of information [J]. Problems of information Transmission, 1965, 1: 1-7.
  • 4Lempel A, Ziv J. On the complexity of finite sequences [J]. IEEE Transactions on information theory, 1976, 22(1): 75-81.
  • 5Lempel A, Ziv J. Compression of two-dimensional data [J]. IEEE Transactions on information theory, 1986, 32(4): 2-8.
  • 6Zozor S, Ravier P, Buttelli O. On Lempel-ziv complexity for multidimensional data analysis [J]. Physiea A, 2005, 345: 285-302.
  • 7Kasper F, Schuster H G. Easily calculable measure for the complexity of spatiot mporal patterns [J]. Phys. Rev. A, 1987, 36(2): 842-848.
  • 8Pincus S M. Approximate entropy as a measure of system complexity [J]. Proc. Natl. Aead. Sci. USA, 1991, 88: 2297-2301.
  • 9Chen W, Zhuang J, Yu W, et al. Measuring complexity using FuzzyEn, ApEn, and SampEn [J]. Medical Engineering & Physics, 2009, 31: 61-68.
  • 10Pham T D. GeoEntropy: A measure of complexity and similarity [J]. Pattern Recognition, 2010, 43: 887-896.

二级参考文献5

共引文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部