期刊文献+

核窗宽自适应的均值偏移跟踪算法 被引量:3

Mean-Shift Tracking Algorithm Based on Adaptive Kernel Bandwidth
下载PDF
导出
摘要 针对固定窗宽的均值偏移算法对逐渐变大的运动目标跟踪不准确的问题,提出了一种窗宽自适应的均值偏移跟踪算法。先对当前帧进行均值偏移跟踪,再通过后向跟踪使跟踪窗口中心与目标形心匹配,利用巴氏系数最大化对窗宽进行±10%的修正,使跟踪窗口的尺度自适应变化。实验结果表明:该算法提高了跟踪精度,增强了跟踪稳定性,保证了跟踪的实时性。 Mean-shift algorithm with fixed bandwidth often fails in tracking the object that moves with obviously change in scale, especially changing bigger. To solve the problem, a new adaptive bandwidth mean-shift tracking algorithm is proposed. The algorithm first matches the center of the tracking window with the target center by the afterward-tracking method, then uses the principle of maximizing bhattacharyya coefficient to fix the bandwidth by _ 10%, thus makes the bandwidth change adaptively. The experimental results prove that the algorithm improves the tracking accuracy, enhances the tracking stability and ensures the real-time tracking.
出处 《湖南工业大学学报》 2012年第2期87-92,共6页 Journal of Hunan University of Technology
关键词 核窗宽自适应 形心匹配 后向跟踪 均值偏移 kernel bandwidth adaptive centroid-based matching backforward tracking mean-shift
  • 相关文献

参考文献14

二级参考文献51

  • 1彭宁嵩,杨杰,刘志,张风超.Mean-Shift跟踪算法中核函数窗宽的自动选取[J].软件学报,2005,16(9):1542-1550. 被引量:165
  • 2朱胜利,朱善安,李旭超.快速运动目标的Mean shift跟踪算法[J].光电工程,2006,33(5):66-70. 被引量:50
  • 3朱胜利,朱善安.核函数带宽自适应的Mean shift目标跟踪算法[J].光电工程,2006,33(8):11-16. 被引量:18
  • 4FUKUNAGA K, HOSTETLER L D. The estimation of the gradient of a density function, with applications in pattern recognition [ J]. IEEE Transactions on Information Theory, 1975, 21(1) : 32 - 40.
  • 5COMANICIU D, RAMESH V, MEER P. Real-time tracking of non- rigid objects using Mean-Shift [ C]// IEEE Computer Vision and Pattern Recognition. Hilton Head Island. Washington, DC: IEEE Press, 2000, 2:142 - 149.
  • 6COLLINS R T. Mean-Shift blob tracking through scale space [ C]// IEEE International Conference on Computer Vision and Pattern Recognition. Baltimore, Victor Graphics: IEEE Press, 2003: 234- 240.
  • 7LINDEBERG T. Feature detection with automatic scale selection [ J]. International Journal of Computer Vision, 1998, 30(2) : 79 - 116.
  • 8[1]Fukanaga K, Hostetler LD. The estimation of the gradient of a density function, with applications in pattern recognition. IEEE Trans. on Information Theory, 1975,21(1):32-40.
  • 9[2]Cheng Y. Mean shift, mode seeking and clustering. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1995,17(8):790-799.
  • 10[3]Comaniciu D, Ramesh V, Meer P. Real-Time tracking of non-rigid objects using mean shift. In: Werner B, ed. IEEE Int'l Proc. of the Computer Vision and Pattern Recognition, Vol 2. Stoughton: Printing House, 2000. 142-149.

共引文献227

同被引文献20

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部