摘要
对大射电望远镜光机电一体化设计中悬索和馈源舱这一大柔性变结构系统的传输特性进行了研究 .由于该系统的结构是动态变化的 ,采用常规方法无法确定其传输特性 ,因此用改进的反向传播算法对其进行了辨识 ,得到了系统的反向传播网络模型 .从测试数据的网络输出结果与理论计算结果的对比可以看出 ,该网络模型能够较好地反映这一系统的输入 /输出特性 .这一结果对大射电望远镜系统的整体建模和馈源舱位置的间接测量都具有意义 ,也为柔性结构系统传输特性的研究提供了一种可资借鉴的方法 .
The transfer characteristics of the flexible and variable structure cables and cabin system used in LT mechanical, electronic and optic integrated design is studied. Since the structure of this system is dynamic, we can not get its transfer characteristics by routine methods. This flexible and variable structure sysgtem is identified by the ameliorative back propagation neural network algorithm and the back propagation neural network model of this system has been obtained. Comparing the theoretical results of testing data with the neural network output results of testing data, the authors draw a conclusion that this neural network model can well express input/output characteristics of this flexible and variable structure system. This kind of neural network modeling method is helpful to modeling LT system and indirectly measuring the position of the cabin. It is also a reference method for the research on flexible and variable structure systems transfer characteristics.
出处
《西安电子科技大学学报》
EI
CAS
CSCD
北大核心
2000年第2期152-156,共5页
Journal of Xidian University
基金
国家自然科学基金资助项目 !(596750 4 0 )
中科院知识创新工程重大项目资助项目
关键词
系统辨识
柔性系统
变结构系统
射电望远镜
system identification
flexible
variable structure
back propagation neural network