摘要
在用积分方程和矩量法(MM)或快速多极子法(FMM)分析三维矢量散射时,都要对有奇异性的被积函数进行积分。如果直接使用高斯积分,则准确性很低。为了得到准确的积分结果,本文在分析了高斯积分原理的基础上提出了“积分区域分割法”。此方法将积分区域划分为一个包含奇异点的部分和若干个无奇异点的部分。对无奇异点的部分可直接用高斯积分求解,而对包含奇异点的部分,则可通过简化被积函数,变量代换和加减同阶奇异项等方法获得它的解析表达式。本文将这种方法用到电场积分方程(EFIE)的矩量法中,以角反射器和导电球目标散射特性(RCS)为例,其计算的结果与文献非常吻合。
When three dimensional vector scattering is analyzed by integral equation and the moment method(MM) or the fast multipole method(FMM), the singular integrand will he done. If it is calculated by Gaussian integration directly, the accuracy will be very poor. In order to get an accurate result, this paper provides a method of integral domain division, which divides the integral domain into several parts with one of them containing the singularity. In the singular part, an analytic result can be derived by simplifying the integral function, replacing the variables, or adding and subtracing a singular term. The other parts can be calculated by Gaussion integration directly. Numerical results for RCS of a corner-reflector antenna and a conducting sphere calculated by this method are in reasonable agreement with that in the references.
基金
国家自然科学基金(项目编号69871004)
关键词
高斯积分
计算
三维矢量散射
奇异积分
Gaussian integration, Singularity, Method of integral domain division