期刊文献+

紧致光滑环簇上的解析向量场

Analytic vector fields on compact smooth toric varieties
原文传递
导出
摘要 本文通过多面体来刻画紧致光滑环簇上解析向量场所构成的向量空间的维数.首先,通过对一些具体的光滑环簇上解析向量场的研究,作者对解析向量场结构有了一个直观认识,并且发现它们与多面体之间存在某种关系;进而作者发现对一般的紧致光滑环簇,解析向量场向量空间的维数等于其对应多面体商集中整点的个数. This paper studies the dimension of the vector space of analytic vector fields on a compact smooth toric variety. Firstly, by the study of some examples, the authors obtain a visual literacy for the construction of the analytic vector fields and discover some relations between them and polytopes; and then, they come to study general compact smooth toric varieties, and find that the dimension of the vector space of analytic vector fields on a compact smooth toric variety is equal to the number of integral point in the quotient set of polotopes.
作者 尚进 陈新红
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第3期499-503,共5页 Journal of Sichuan University(Natural Science Edition)
关键词 紧致光滑环簇 解析向量场 多面体 smooth toric variety, analytic vector field, polytope
  • 相关文献

参考文献8

  • 1Batyrev V. Dual polyhedra and mirror symmetry for Calabi-Yau Hypersurfaces in toric varieties [J]. J Al- gebraic Geom, 1994, 3(3) : 493.
  • 2Gualtieri M. Generalized complex geometryl- EB/OL] arXiv: math/0401221.
  • 3Chen Z, Stienon M, Xu P. Geometry of maurer-car- tan elements on complex manifolds [J]. Comm Math Phys, 2010, 297(1) 169.
  • 4Fulton W. Introduction to toric varieties [M]. Prin- ceton: Princeton University Press, 1993.
  • 5Hartshorne R. Algebraic geometry[M]. GTM52. Beijing: World Publishing Co. , 1977.
  • 6Cox D, Little J, Sehenek H. Torie varieties [M]. Providence: AMS, 2011.
  • 7李晓斌.辛virtual局部化的一个应用[J].四川大学学报(自然科学版),2010,47(2):213-220. 被引量:4
  • 8陈新红,尚进.加权环簇的轨形结构[J].四川大学学报(自然科学版),2011,48(6):1234-1238. 被引量:5

二级参考文献21

  • 1陈钢.Orbifold上的积分[J].四川大学学报(自然科学版),2004,41(5):931-939. 被引量:1
  • 2Adem A,Leida J,Ruan Y B.Orbifolds and stringy topology[M].Cambridge:Cambridge University Press,2007.
  • 3Cox D A,Katz S.Mirror symmetry and algebraic geometry[M].Providence:Amer Math Soc,1999.
  • 4Kontsevich M.Enumeration of rational curves via torus action[C]∥Dijkgraff R,Faber C,G van der Geer,eds.The Moduli Space of Curves,Boston:Birkhauser,1995.
  • 5Graber T,Pandharipande R.Localization of virtual class[J].Invent Math,1999,135:487.
  • 6Chen B H,Li A M.Symplectic virtual localization of Gromov-Witten invariants[EB/OL].http:∥arxiv.org/PsCache/math/pdf/0610/0610370v1.pdf,2006.
  • 7Chen B H,Tian G.Virtual manifold and localization[J].Acta Math Sin,2010,26:1.
  • 8Faber C,Pandharipande R.Hodge integrals and Gromov-Witten theory[J].Invent Math,2000,139(1):173.
  • 9Witten E.Two dimensional gravity and intersection theory on moduli space[J].Surveys Diff Geom,1991,1:243.
  • 10Atiyah M F,Bott R.The moment map and equivariant cohomology[J].Topology,1984,23(1):1.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部