期刊文献+

边界层理论中Falkner-Skan方程的数值解 被引量:2

On the numerical solution of the Falkner-Skan equation arising in boundary layer theory
原文传递
导出
摘要 作者采用有限差分法求解著名的Falkner-Skan方程,计算效率明显高于其他数值方法.此法求解利用了Lan和Yang近期建立的Falkner-Skan方程和奇异积分方程之间的等价性.有限差分方法数值解的结果与先前一些作者的结果一致. In this paper, a finite difference method for the numerical solution of the wellknown FalknerSkan equation is presented, in which the amount of computational effort is significantly less than the other numerical methods. The methodology is to utilize the equivalence between the FalknerSkan equation and a singular integral equation established recently by Lan and Yang. The numerical solutions obtained by the finite difference method are in agreement with those obtained by previous authors.
作者 罗敏 胡建成
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第3期514-516,共3页 Journal of Sichuan University(Natural Science Edition)
基金 成都信息工程学院校选科研项目(CRF200904)
关键词 Falkner—Skan方程 等价 有限差分法 Falkner-Skan equation equivalence finite difference method
  • 相关文献

参考文献9

  • 1Hartman P. On the existence of similar solutions of some boundary layer problems[J]. SIAM J Math A- nal, 1972, 3: 120.
  • 2Yang G C. Existence of solutions to the third-order nonlinear differential equations arising in boundary layer theory[J]. Applied Math Lett, 2003, 16: 827.
  • 3Na T Y. Computational methods in engineering boundary value problems[M]. New York: Academic press, 1997.
  • 4Asaithambi A. Numerical solution of the Falkner- Skan equation using piecewise linear functions[J]. Appl Math Comput, 2004, 159: 267.
  • 5Hartman P. ()rdinary differential equations (Classic- sin Applied Mathematics, 38) [M]. Philadelphia : SI- AM, PA, 2002.
  • 6Lan K Q, Yang G C. Positive solutions of te FMk- ner-Skan equation arising in the boundary layer theo- ry[J]. Canada Math Bull, 2008, 51(3): 386.
  • 7Katagiri M. On accurate numerical solutions of Falk- ner-Skan equation[J]. Proceedings of the Symposium on Mechanics for Space Flight, Tokyo Univ, 1985.
  • 8Yu Y Y, Hu B, MINX C. Finite difference scheme for the nonlinear Sobolev-Galpern equation [J]. J Si-chuanUniv:NatSciEd(四川大学学报:自然科学版),2011,48(1):48.
  • 9Xu Y C, Hu j S, t-Iu C L. A new conservation finite difference scheme for generalized regularized longwave equation[J]. J Sichuan Univ Nat Sci Ed(四川大学学报:自然科学版),20ll,48(3):534.

同被引文献7

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部