期刊文献+

涡流检测仿真中的多物体问题研究

Research of the Multi-Object in Eddy Current Testing Simulation
下载PDF
导出
摘要 传统涡流仿真模型仅包含单一求解区域,将所有物体囊括在内。随着近代工业科技的飞速发展,被检物体日趋复杂,从而使得传统涡流仿真模型的计算效率降低。将单一求解区域划分为数个子区域,可以有效克服网格模型复杂的问题。简要介绍分解区域在电磁及涡流检测中的应用。 Tradition eddy current testing models have only one solution domain, including all objects. With the high speed develop of Industrial Sciences and Technology, the detected objects become complex, so the convention models are inefficiency. Decomposing the whole domain into some sub-domain is a way to overcome the problem of complex meshes. In this article, author will introduce the domain decomposition method using in electromagnetic problems and application in eddy current testing.
出处 《机电工程技术》 2012年第5期52-53,共2页 Mechanical & Electrical Engineering Technology
关键词 涡流检测 区域分解 电磁仿真 eddy current testing domain decomposition method electromagnetic simulation
  • 相关文献

参考文献4

二级参考文献22

  • 1张华,洪伟,郝张成,崔铁军.一种采用边界检测的自适应区域分解时域有限差分方法[J].应用科学学报,2005,23(5):493-496. 被引量:3
  • 2余德浩.无界区域非重叠区域分解算法的离散化及其收敛性[J].计算数学,1996,18(3):328-336. 被引量:53
  • 3[1]CHEN Z,DU Q,ZOU J.Finite element methods with matching and nonmatching meshes for Maxwell equations with discontinuous coefficients [J].SIAM JNumerAnal,2000,37:1542-1570.
  • 4[2]CIARLET P,ZOU J.Fully discrete finite element approaches for time-dependent Maxwell's equations [J].Numerische Mathematik, 1999,82: 193-219.
  • 5[3]KANG T, MA C, LIANG G. H-based A-φapproaches for eddy current problem [J]. To appear.
  • 6[4]KANG T, MA C, LIANG G. H-based A-φapproaches of approximating eddy current problem by way of solving different systems inside and outide the conductor [J].Applied Mathematics and Computation, 2003, in press.
  • 7[5]KANG T, YU D, WU Z. An H-based A-φmethod with a nonmatching grid for eddy current problem with discontinuous coefficients [J]. To appear.
  • 8[6]KANG T, WU Z, YU D. E-based A-φapproaches of deey current problem based on solving different equation systems [J]. To appear.
  • 9[7]YU D. Natural boundary integral method and its applications [M]. New York: Kluwer Academic Publisher, 2002.
  • 10[10]邬吉明.三维问题的自然边界元法及区域分解算法 [D].北京:中国科学院计算数学与科学工程计算研究所,1999.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部