期刊文献+

EGO方法的训练算法及应用 被引量:1

Training Algorithms for EGO Method and Applications
下载PDF
导出
摘要 针对高效全局优化(Efficient Global Optimization,简称EGO)方法的训练问题,选择元启发式(Meta-heuristic)算法、随机取样算法以及低频序列算法,并选用三个无约束、两个带约束解析优化算例以及两个气动优化算例,对这三类训练算法进行详细地比较研究,发现在元启发式算法中差分进化算法最具应用潜力,而低频序列算法可以有效降低EGO方法的随机性,其中Faure序列平均性能最优. Three kinds of training algorithms for efficient global optimization (EGO) method are investigated. A kind of training algorithm based on low-discrepancy sequences is proposed to reduce randomness of EGO method. Performance of EGO method depends on a good training algorithm. Since training problems in EGO are non-convex and non-smooth, meta-heuristic algorithms, random algorithm and low-discrepancy sequences are chosen to address five benchmark optimization problems and two aerodynamic shape optimization problems. In these problems, differential evolution algorithm was found the best in meta-heuristic algorithms. Training algorithm based on low-discrepancy sequences can effectively reduce randomness of EGO method and Faure sequence has the best performance.
出处 《计算物理》 EI CSCD 北大核心 2012年第3期326-332,共7页 Chinese Journal of Computational Physics
关键词 计算流体力学 气动外形优化 克里金模型 全局优化 computational fluid dynamic aerodynamic shape optimization Kriging model global optimization
  • 相关文献

参考文献26

  • 1Jameson A. Aerodynamic design via control theory [ J ]. Journal of Scientific Computing, 1988,3 ( 3 ) :233 - 260.
  • 2Holland J H. Adaptation in natural and artificial systems[ M ]. Michigan:University of Michigan Press, 1975.
  • 3Kennedy J, Eberhart R C. Particle swarm optimization[ C ]//Proceedings of IEEE International Conference on Neural Networks, Piscataway, 1995.
  • 4Kirkpatrick S, Gellat J R, Vecchi M P. Optimization by simulated annealing[ J ]. Science, 1983,220 (4598) :671 - 680.
  • 5Forrester A I J, Keane A J. Recent advances in surrogate-based optimization[ J ]. Progress in Aerospace Sciences,2009,45 (1 - 3) :50 -79.
  • 6Qin N, Wong W S, Le Moigne A. Three-dimensional contour bumps for transonic wing drag reduction [ J ]. Proceedings of the I MECH E Part G Journal of Aerospace Engineering,2008,222 ( 5 ) :619 - 629.
  • 7Simpson T W, Toropov V, Balabanov V, et al. Design and analysis of computer experiments in muhidisciplinary design optimization: A review of how we have come-or not [ C]//12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Victoria, British Colombia, 2008 : 1 - 21.
  • 8Jones D, Schonlau M, Welch W. Efficient global optimization of expensive black-box functions[ J]. Journal of Global Optimization, 1998,13 (4) :455 - 492.
  • 9侯成义.EGO算法的翼型气动外形优化设计[J].哈尔滨工业大学学报,2011,43(3):137-139. 被引量:2
  • 10Sacks J, Welch W J, Mitchell T J, et al. Design and analysis of computer experiments [ J ]. Statistical Science, 1989,4 (4) :409 -23.

二级参考文献9

  • 1DUVIGNEAU R, VISONNEAU M. Hybrid genetic algo- rithms and neural networks for fast CFD-based design [ R]. Atlanta: AIAA 2002 - 5465, 2002.
  • 2RAJAGOPAL S, GANGULI R. Muhidisciplinary design optimization of an UAV wing using kriging based multi-ob- jective genetic algorithm[R]. AIAA 2009 -2219, 2009.
  • 3JONES D L. A taxonomy of global optimization methods based on response surfaces [ J ]. Journal of Global Opti- mization, 2001, 21 (4): 345-383.
  • 4SCHONLAU M. Computer experiments and global opti- mizationf D]. Ontario Canada: Waterloo, 1997.
  • 5KENNEDY J, EBERftART R C. Particle swarm optimi- zation [ C ]//Proceedings of IEEE International Confer- ence on Neural Networks. Washington, DC: IEEE Serv- ice Center, 1995: 1942- 1948.
  • 6CRESSIE N A C. Statistics for spatial data[ M]. New York: John Wiley & Sons, 1993.
  • 7HICKS R M, HENNE P A. Wing design by numerical optimization[ J]. Journal of Aircraft, 1978, 15 (7) : 407-413.
  • 8苏伟,高正红,夏露.一种代理遗传算法及其在气动优化设计中的应用[J].西北工业大学学报,2008,26(3):303-307. 被引量:10
  • 9王红涛,竺晓程,杜朝辉.基于Kriging代理模型的改进EGO算法研究[J].工程设计学报,2009,16(4):266-270. 被引量:14

共引文献1

同被引文献3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部