期刊文献+

不同类型多孔结构生物材料支架制备及其性能优化 被引量:5

Preparation and Properties Improvement of Biomaterials Scaffolds with Various Porous Structures
下载PDF
导出
摘要 多孔支架是组织工程应用中的关键环节,类似细胞外基质的作用,支撑细胞的粘附和随后细胞向组织的衍化。虽然目前已采用多种制备技术研发出大量的多孔支架,但是多孔生物材料支架的制备和性能优化,仍然是组织工程支架领域的研究热点。结合实验室工作,综述了多种制备不同类型多孔结构生物材料支架的制备技术,主要包括颗粒和纤维堆积型支架、泡沫浸渍法支架和颗粒制孔支架等的制备技术,并阐述了这些制备技术对多孔结构支架的孔结构、贯通性和力学性能的改善效果。其目的旨在提供满足组织工程需求的多孔生物材料支架。 The porous scaffold is a key factor in the application of tissue engineering. Porous scaffolds which play the role of extracellular matrix similarly provide space for cell adhesion and the subsequent derivation of cells to organization. At present, although a large number of porous scaffolds have been fabricated by various preparation technologies, prepara- tion technologies and performance optimizations of porous biomaterials scaffolds is still a hot topic in the field of tissue en- gineering. Combined with the work in our laboratory, this paper reviewed a variety of preparation technologies ( including particle accumulation method, fiber accumulation method, foam immersion method, particle leaching method, etc. ) of biomaterials scaffolds with various types of porous structure and illustrated the effect on pore structure, connectivity and mechanical property, etc. The aim is to provide a porous biomaterials scaffold to satisfy the need of tissue engineering.
出处 《中国材料进展》 CAS CSCD 2012年第5期30-39,共10页 Materials China
基金 国家重点基础研究发展计划(973计划,2012CB933602) 国家自然科学基金重点项目(51172188,30870630) 四川省科技支撑计划(2008JY0062) 西南交通大学博士创新基金
关键词 组织工程 生物材料 多孔支架 制备技术 性能优化 tissue engineering biomaterials porous scaffolds preparation technologies performance optimizations
  • 相关文献

参考文献53

  • 1Zhang Z Y, Teoh S H, Hui J H P, et al. The Potentiall of Human Fetal Mesenchymal Stem Cells for off-The-Shelf Bone Tissue Engi- neering Application[ J ]. Biomaterials, 2012, 33 (9) : 2 656 - 2 672.
  • 2Holzwarth J M, Ma P X. Biomimetic Nanofibrous Scaffolds for Bone Tissue Engineering [ J]. Biomaterials, 2011, 32 ( 36 ) : 9622-9629.
  • 3Zhang Z Y, Teoh S H, Teo E Y, et al. A Comparison of Bioreac- tors for Culture of Fetal Mesenchymal Stem Cells for Bone Tissue Engineering[J]. Biomaterials, 2010, 31 (33) : 8 684 -8 695.
  • 4Xu C X, Su P Q, Chen X F, et al. Biocompatibility and Osteo- genesis of Biomimetic Bioglass-Collagen-Phosphatidylserine Com- posite Scaffolds for Bone Tissue[ J]. Biomaterials, 2011, 32 (4) : 1 051 -1 058.
  • 5Lu H X, Hoshiba T, Kawazoe N, et al. Cultured Cell-Derived Ex- tracellular Matrix Scaffolds for Tissue Engineering[ J ]. Biomaterials, 2011, 32(36) : 9 658 -9 666.
  • 6Talukdar S, Nguyen Q T, Chen A C, et al. Effect fo Initial Cell Seeding Density on 3D-Engineered Silk Fibroin Scaffolds for Artic- ular Cartilage Tissue Engineering [ J ]. Biomaterials, 2011, 32 (34): 8927-8937.
  • 7Murphy C M, Haugh M G, O'Brien F J. The Effect of Mean Pore Size on Cell Attachment, Proliferation and Migration in Collagen- Glycosaminoglycan Scaffolds for Bone Tissue Engineering[J]. Bio- materils, 2010, 31(3) : 461 -466.
  • 8Karageorgiou V, Kaplan D. Porosity of 3D Biomaterial and Osteo- genesis[ J]. Biomaterials, 2005, 26 (27) : 5 474 - 5 491.
  • 9Lien S M, Ko L Y, Huang T J. Effect of Pore Size on ECM Secre- tion and Cell Growth in Gelatin Scaffold for Articular Cartilage Tissue Engineering[ J]. Acta Biomaterialia, 2009, 5 (2) : 670 - 679.
  • 10Wang Y, Shen Y F, Wang Z Y, et al. Development of Highly Porous Titanium Scaffolds by Selective Laser Melting[ J]. Materials Letters. 2010. 64(6) : 674 -676.

二级参考文献14

  • 1Ma P X. Biomimetic materials for tissue engineering. Advanced Drug Delivery Reviews, 2008, 60(2): 184-198.
  • 2Lien S M, Ko L Y, Huang T J. Effect of pore size on ECM secretion and cell growth in gelatin scaffold for articular cartilage tissue engineering. Acta Biomaterialia, 2009, 5(2): 670-679.
  • 3Wang H N, Li Y B, Zuo Y, et al. Bioeompatibility and osteogenesis of biomimetic nano-hydroxyapatite/polyamide composite scaffolds for bone tissue engineering. Biomaterials, 2007, 28(22): 3338-3348.
  • 4Hutmacher D W. Scaffolds in tissue engineering bone and cartilage. Biomaterials, 2000, 21(24): 2529-2543.
  • 5Ma P X. Scaffolds for tissue fabrication. Materials Today, 2004, 7(5): 30--40.
  • 6Tadic D, Beckmann F, Schwarz K, et al. A novel method to produce hydroxyapatite objects with interconnecting porosity that avoid singtering. Biomaterials, 2004, 25(16): 3335-3340.
  • 7Gauthier O, Bouler J M, Aguado E, et al. Macroporous biphasic calcium phosphate ceramics influence of macropore diameter and macroporosity percentage on bone ingrowth. Biomaterials, 1998, 19(3): 133-139.
  • 8Carine W, Brigitte G,Christelle L, et al. Biomaterial surface properties modulate in vitro rat calvaria osteoblasts response: roughness and or chemistry? Materials Science and Engineering C, 2008, 28(5/6): 990-1001.
  • 9Ponsonnet L, Reybier K, JaffreZic N, et al.Relationship between surface properties (roughness, wettability) of titanium and titanium alloys and cell behaviour. Materials Science and Engineering C, 2003, 23(4): 551-560.
  • 10Sanchez-Salcedo S, Nieto A, Vallet-Regi M. Hydroxyapatite/β-tricalcium phosphate/agarose rnacroporous scaffolds for bone tissue engineering. Chemical Engineering Journal, 2008, 137(1): 62-71.

共引文献7

同被引文献69

  • 1Sadat-Shojai M, Mohammad A, Azi2011ah N, et al. Hydroxyapatitenanorods as novel fillers for improving the properties of dental ad-hesives :Synthesis and application [ J ]. Dent Mater, 2010, 26(5):471 -82.
  • 2Fellah B H,Gauthier 0, Weiss P,et al. Osteogenicity of biphasiccalcium phosphate ceramics and bone autograft in a goat model[J]. Biomaterials,2008,29(9): 1177 -88.
  • 3Kim S G. Bone grafting using particulate dentin[ J]. Key Eng Ma-ter,2007,342 -3:29 -32.
  • 4Lin F H,Liao C J,Chen K S,et al. Preparation of beta TCP/HAPbiphasic ceramics with natural bone structure by eating bovinecancellous bone with the addition of( NH4)2HP04 [ J]. J BiomedMater Res,2000,51 (2) :157 -63.
  • 5Schwartzwalder K,Somers A V. Method of making porous ceramicarticles [ P]. United States Patent :3,090,094,1963.
  • 6Lien S M,Ko L Y,Huang T J. Effect of pore size on ECM secietionand cell growth in gelatin scaffold for articular cartilage tissue en-gineering [J]. Acta Biomater,2009,5(2) :670 -9.
  • 7Stahli C, Bohner M,Bashoor-Zadeh M,et al. Aqueous impregnationof porous p-tricalcium phosphate scaffolds [ J ]. Acta Biomater,2010,6(7) :2760-72.
  • 8CAMERON A R, FRITH J E, GOMEZ G A, et al. The effect of time-dependent deformation of viscoelastic hydrogels on myogenic induction and Racl activity in mesenchymal stem cells . Biomaterials, 2014, 35(6) : 1857-1868.
  • 9LAU T T, WANG D A. Bioresponsive hydrogel scaffolding systems for 3D constructions in tissue engineering and regen- erative medicine [J]. Nanomedicine, 2013, 8(4) : 655-668.
  • 10GUO H D, WANG H J, TAN Y Z, et al. Transplantation of Marrow-Derived cardiac stem cells carried in fibrin improves cardiac function after myocardial infarction [J]. Tissue Eng Part A, 2011, 17(1/2): 45-58.

引证文献5

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部