期刊文献+

基于后悔度的博弈剔除算法的逻辑认知分析 被引量:2

The Epistemic Analysis of Eliminate Algorithm in Game Theory Based on Regret Degree
下载PDF
导出
摘要 博弈分析中存在大量的逻辑问题,通过认知逻辑可以精确表达主体间认知互动中的推理。首先,构建了基于后悔度的博弈认知模型,从选手选择某一策略所导致的后悔度分析主体的理性特征,为多种博弈剔除算法的认知机制提供统一的逻辑刻画。其次,基于后悔度模型,重提主体理性定义,并证明该理性可作为公开宣告的事实,借助公开宣告逻辑,为Halpern等人提出的重复最大最小化后悔度算法提供合理的逻辑认知基础。 A number of logical issues remain in game theory analysis: for instance,an inference based on cognitive interaction between individuals can be accurately modeled through epistemic logic.Firstly,Regret Degree——a game epistemic model which is used to analyze the character of individuals' rationality in terms of the degree of regret resulting from player's strategy of decision-making,provides a unified means to characterize the cognitive mechanism within multiple game eliminate algorithms;secondly,based on the Model of Regret Degree,agent' rationality is redefined,which functions to be an evidence for public announcement logic.Thus,public announcement logic provides a reasonable and epistemic foundation for the algorithms of maximizing or minimizing regret degree(by Halpern et al.).
作者 崔建英
出处 《暨南学报(哲学社会科学版)》 CSSCI 北大核心 2012年第5期137-143,164,共7页 Jinan Journal(Philosophy and Social Sciences)
基金 中国博士后科学基金项目<博弈主体交互认知的逻辑研究>(批准号:2011M501370) 广东省哲学社会科学规划项目<博弈剔除算法认知基础的动态认知逻辑研究>(批准号:GD11YZX03) 广州市哲学社会科学规划课题<博弈中理性主体认知交互的逻辑研究>(批准号:11Y13)
关键词 后悔度 博弈认知模型 博弈剔除算法 动态认知逻辑 regret degree game epistemic model game eliminate algorithms dynamic epistemic logic
  • 相关文献

参考文献24

  • 1Abramsky S. A compositional game semantics for Multi - Agent logics of imperfect information in interactive logic [ M]//ivan Benthem J, Gabbay D, Lowe B. Texts in Log- ic and Games Vol. 1. Amsterdam:Amsterdam University Press, 2007.
  • 2Van Benthem J, Pacuit E, Roy O. Toward a theory of play: a logical perspective on games and interaction [ J ]. Games. 2011,2(1).
  • 3Bonanno G. Answers to five questions on epistemic logic [ M ]/yVincent F, Hendricks, Roy O. Epistemic logic : 5 questions, Automatic Press ! VIP,2010.
  • 4Board J. Dynamic interactive epistemology [ J ]. Games and Economic Behavior,2004,49.
  • 5Aumann R, Brandenburger A. Epistemic conditions for Nash equilibrium [ J ]. Econometrica: Journal of the E- conometric Society, 1995,63 (5).
  • 6Pacuit E, Roy O. A dynamic analysis of interactive ra- tionality [ C ]//J Proceedings of the Third international con- ference on Logic, rationality, and interaction, 2011.
  • 7van der Hoek W, Paaly M. Modal logic for games and information[ M] //Handbook of modal logic. Elsevier B. V. ,2007.
  • 8Aumann R J. Rationality and bounded rationality [ J ] Games and Economic Behavior, 1999, 53.
  • 9Brandenburger A, Friedenberg A, Keisler H J. Admissi- bility in games [ J ]. Econometrica, 2008,76 (2).
  • 10Gilli M. Iterated admissibility as solution concept in game theory[ R]. University of Milano - Bicocca, De- partment of Economics,2002.

同被引文献16

引证文献2

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部