摘要
考虑一类具有成群防卫模型dxdt=x(k - x2 ) ex - xy,dydt=-βy(ex -αx2 ) (x(0 )≥ 0 ,y(0 )≥ 0 ) ,讨论了该模型轨线的有界性 ,极限环的不存在性、存在性及 Hopf分支问题 .
A class of model with group defence dxdt=x(k-x 2)e x-xy, dydt=-βy(e x-αx 2) (x(0)≥0,y(0)≥0)is considered. Bounds of orbit of the model and the existence and non existence of limit cycle and Hopf bifurcation of the model (1) are discussed.
出处
《甘肃教育学院学报(自然科学版)》
2000年第2期8-10,共3页
Journal of Gansu Education College(Natural Science Edition)