摘要
用Fourier谱方法讨论如下的非线性Schrodinger方程及其周期初值问题 ut-(λ十ia)Δu+(k+iβ)u~2u+γu=f(x,t),u(x+2π,t),u(x,0)=u_0(x) 构造了全离散的Fourier谱逼近格式,并证明了格式的大时间收敛性。
The authors study the Fourier spectral method for large time problem of a class of two-dimensional nonlinear Schrodinger equations with periodic initial value conditions of following u_t-(λ+ia)△u +(k +iβ)u^2u +γu=f(x, t), u(x + 2π, t) = u(x, t), u(x, 0) = u_0(x)。 A fully discrete Fourier spectral scheme is constructed, and the long time convergence of scheme is proved.
出处
《黑龙江大学自然科学学报》
CAS
2000年第1期13-15,共3页
Journal of Natural Science of Heilongjiang University
基金
黑龙江省自然科学基金
关键词
大时间收敛
傅里叶谱
非线性薛定谔方程
the nonlinear Schrodinger equations
Fourier spectral method
long time convergence