期刊文献+

Burgers方程差分解的收敛性与稳定性 被引量:2

Finite difference schemes for Burgers' equation
下载PDF
导出
摘要 针对Burgers方程的初边值问题建立了全离散两层加权中心差分格式,得到了差分解的L_2模估计,证明了差分解的存在性、收敛性和稳定性,并且得到了显格式和弱隐格式对于步长T和h的限制条件. The existence,convergence and stability of the full-discrete center difference schemes with a parameterαfor the mixed problems of Burgers' equation are considered.The estimates of the difference solution are obtained.Especially the restriction conditions to the step-lengthτand h for the explicit and weakly implicit schemes are found.
作者 谢焕田
机构地区 临沂大学理学院
出处 《高校应用数学学报(A辑)》 CSCD 北大核心 2012年第1期57-62,共6页 Applied Mathematics A Journal of Chinese Universities(Ser.A)
基金 国家自然科学基金(10901076)
关键词 BURGERS方程 有限差分 收敛性 稳定性 Burgers'equation finite difference convergence stability
  • 相关文献

参考文献8

二级参考文献18

  • 1IstrteescuVL著.不动点理论及应用[M].上海:上海科学技术文献出版社,1991..
  • 2Guo Boling, Tan Shaobin. Global smooth solution for a coupled nonlinear wave equations[J]. Math Meth in the Appl Sci,1991;14:419-425.
  • 3Guo Boling, Yang Linge. The global attractors for the periodic initial value problem for a coupled nonlinear wave equation[J]. Math Meth in the Appl Sci,1999;19:131-144.
  • 4Ito M. Symmetries and conservation laws of a coupled nonlinear wave equation[J]. Phys Lett, 1982;91A:335-338.
  • 5Kupershmidt B A. A couple KdV equation with dispersion[J]. J Phys A Math Gen, 1985;18:L571-L573.
  • 6Zhu Shaohong. Strong and weakly implicit and explicit schemes for the KdV equation[J]. Beijing Math,1996;2:39-50.
  • 7Zhou Yulin. On the general interpolation formulas for the discrete functional Space(Ⅰ)[J]. J Comp Math,1993;11:188-192.
  • 8Zhou Yulin. Applications of Discrete Functional Analysis to the Finite Difference Method[M]. International Academic Publishers, Beijing, 1990.
  • 9Wang M L.Exact solution of a compound KdV-Burgers equation[J].Physics Lettes,1996,A213:279
  • 10Hopf E.The partial differential equation ut+uux=μxx[J].Comm.Pure Appl.Math.3(1950,201-230)

共引文献18

同被引文献5

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部