期刊文献+

含混合时滞的随机Hopfiled神经网络的全局指数稳定性 被引量:4

Global Exponential Stability of Stochastic Hopfield Neural Networks with Mixed Time Delays
下载PDF
导出
摘要 考虑一类含混合时滞的随机Hopfiled神经网络,运用Razumikin方法和不等式技巧得到了该网络平凡解的p阶指数稳定性,推广了一些已有的结果,并利用一个例子,说明结果的有效性. In this paper,a class of stochastic Hopfield neural network with mixed delays is investigated.Some sufficient conditions are derived to ensure the p-th moment exponential stability of stochastic Hopfield neural network with mixed delays by using Razumikhin method and inequality techniques.The result derived in this paper improves and generalizes some earlier works reported in the literature.A numerical example is given to illustrate the effectiveness of the result.
出处 《四川师范大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第3期303-308,共6页 Journal of Sichuan Normal University(Natural Science)
基金 国家自然科学基金(10971147) 四川省应用基础研究基金(2009JY0066) 四川省教育厅自然科学基金(08Z044)资助项目
关键词 随机Hopfiled神经网络 混合时滞 Razumikin定理 全局指数稳定 stochastic Hopfield neural networks mixed delays global exponential stability
  • 相关文献

参考文献18

  • 1Hopfield J J. Neurons with gradad response have collective computational properties like those of two-state neurons[J]. Proc Natl Acad Sci,1984,81:3088-3092.
  • 2Gopalsamy K, He X Z. Stability in asymmetric Hopfield nets with trasmission delays[J]. Physica,1994,D76:344-358.
  • 3Zhao H Y. Global asymptotic stability of Hopfield neural network involving distributed delays[J]. Neural Networks,2004,17:47-53.
  • 4Zhou J, Li S Y, Yang Z G. Global exponential stability of Hopfield neural network with distributed delays[J]. Appl Math Model,2009,33:1513-1520.
  • 5Zhang Q, Wei X P, Xu J. Global exponential stability of Hopfield neural network with continuously distributed[J]. Phys Lett,2003,A315:431-436.
  • 6Li S Y, Huang Y M, Xu D Y. On the equilibrium and stability of a class of neural network with mixed delays[J]. Advance in Neural Network,2006,1:141-146.
  • 7Wang Z D, Liu Y R, Liu X H. On global asymptotic stability of neural network with discrete and distributed delays[J]. Phys Lett,2005,A345(4/5/6):299-308.
  • 8Liu Y R, Wang Z D, Liu X H. Global exponential stability of generalized recurrent neural network with discrete and distributed delays[J]. Neural Network,2006,19(5):667-675.
  • 9Haykin S. Neural Networks[M]. New Jersey:Prentice-Hall, Englewood Cliffs,1994.
  • 10Liao X X, Mao X R. Exponential stability and instability of stochastic neural networks[J]. Stochast Anal Appl,1996,14:165-185.

同被引文献43

  • 1李永昆.具有偏差变元的双曲型微分方程组解的振动性[J].数学学报(中文版),1997,40(1):100-105. 被引量:66
  • 2李必文,万素梅.具变时滞的细胞神经网络的周期解[J].数学杂志,2007,27(4):483-488. 被引量:2
  • 3Gyori I,Krisztin T.Oscillation results for linear partial delay differential equations[J].J Math Anal Appl,1993,174:204-217.
  • 4He M X,Liu A P.The oscillation of hyperbolic functional differential equations[J].Appl Math Comput,2003,143:205-224.
  • 5Li W N,Meng F W.Forced oscillation for certain systems of hyperbolic differential equations[J].Appl Math Comput,2003,141:313-320.
  • 6Wang P G,Wang M,Ge W.Further results on oscillation of hyperbolic differential equations of neutral type[J].J Appl Anal,2004,10(1):117-129.
  • 7Yoshida N.Oscillation Theory of Partial Differential Equations[M].Singapore:World Scientific Publishing,2008.
  • 8Pao C V.Dynamics of nonlinear parabolic system with time delays[J].J Math Anal Appl,1996,198:751-779.
  • 9Wu J H.Theory and Applications of Partial Functional Differential Equations[M].New York:Springer-Verlag,1996.
  • 10Ladde G S,Lakshmikantham V,Zhang B G.Oscillation Theory of Differential Equations with Deviating Arguments[M].New York:Marcel Dekker,1987.

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部