期刊文献+

Cayley图的齐次因子分解的构造 被引量:3

Construction of Homogeneous Factorisations of Cayley Graphs
下载PDF
导出
摘要 有限图的齐次因子分解理论是近年来提出的一个新兴研究课题.从图的齐次因子分解的本质出发,首先给出了Cayley图齐次因子分解的等价定义,基于此定义,采取理论构造的方法,研究了Cayley图齐次因子分解的3类构造,即一般齐次因子分解的构造、Cayley齐次因子分解的构造、Cayley-cyclic齐次因子分解的构造,得到了3种可行的构造方法,进一步完善了有限图的齐次因子分解理论,其价值和实用性还在于其用于相关命题的证明,使得证明过程较其他方法更简洁明了. Homogeneous factorisations of finite graphs is a new reasearch topic proposed in recent years.In this paper,firstly,an equivalent definition is given based on the essential nature of homogeneous factorisation of Cayley graphs.Then by employing theoretical construction,three kinds of construction methods are obtained.That is,the construction of general homogeneous factorisation,Cayley homogeneous factovisation and Cayley cyclic homogeneous factorisation.The results obtained in this paper symplify the prooofs of other related propositions in graph theory.
出处 《四川师范大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第3期322-326,共5页 Journal of Sichuan Normal University(Natural Science)
基金 贵州省教育厅自然科学基金(2008083)资助项目 安顺学院青年基金(2011AQ05)
关键词 齐次因子分解 Cayley齐次因子分解 Cayley-cyclic齐次因子分解 构造 homogeneous factorisation Cayley homogeneous factorisation Cayley-cyclic homogeneous factorisation construction
  • 相关文献

参考文献15

  • 1Guralnick R, Li C H, Praeger C E, et al. On orbital partitions and exceptionality of primitive permutation groups[J]. Trans Am Math Soc,2004,356:4857-4872.
  • 2Driscoll J, Healy D, Rockmore D. Fast discrete polynomial transformation with application to deta analysis distance graphs [J]. SIAM J Comput,1997,26(4):1066-1099.
  • 3Calkin N J, Erdos P, Tovey C A. New Ramsey bounds from cyclic graphs of prime order[J]. SIAM J Discrete Mathematics,1997,10(3):381-387.
  • 4Guralnick R M, Müller P, Saxl J. The rational function analogue of a question of Schur and exceptionality of permutation representations[J]. Mem Am Math Soc,2003,162:61-69.
  • 5Maslen D K, Orrison M E, Rockmore D N. Computing isotypic projections with the Lanczos iteration[J]. SIAM J Matrix Anal Appl,2003,25:784-803.
  • 6Lim T K. Edge-transitive homogeneous factorisations of complete graphs[D]. Perth:The University of Western Australia,2004.
  • 7Stringer L. Homogeneous factorisations of complete digraphs[D]. Perth:University of Western Australia,2004.
  • 8Cuaresma M C, Giudici M, Praeger C E. Homogeneous factorisations of Johnson graphs[J]. Designs Codes and Cryptography,2008,46(3):303-327.
  • 9Giudici M, Li C H, Potocnik P, et al. Homogeneous factorizations of graphs and digraphs[J]. Euro J Combin,2006,27(1):11-37.
  • 10Fang X G, Li C H, Wang J. On transitive one-factorizations of arctransitive graphs[J]. J Combin Theo,2007,A114(4):692-703.

二级参考文献11

  • 1LI C H,PRAEGER C E. On partitioning the orbitals of a transitive permutation group[ J]. Trans Amer Math Soc,2003,355: 637-653.
  • 2GIUDICI M, LI C H, POTOCNIK P, et al. Homogeneous factorizations of graphs and digraphs[J]. European J Combin,2006, 27 : 11-37.
  • 3GIUDICI M, LI C H, POTOCNIK P, et al. Homogeneous faetorisations of complete multipartite graphs [ J ]. Discrete Math, 2007,307:415-431.
  • 4LI C H. Finite edge -transitive Cayley graphs and rotary Cayley maps[ J]. Trans Amer Math Soe ,2006,358:4 605-4 635.
  • 5STRINGER L. Homogeneous factorisations of complete digraphs [ D ]. M Sc Dissertion:The University of Western Australia, 2004.
  • 6LIM K. Edge -transitive homogeneous factorisations of complete graphs[D].M Sc Dissertion:The University of Western Australia, 2003.
  • 7LI C H, PRAEGER C E. Self - complementary vertex - transitive graphs need not be Cayley graphs [ J ]. Bull London Math Soc, 2001,33(6) :653-661.
  • 8LI C H, PRAEGER C E, SRINGER L. Common circulant homogeneous factorisations of the complete digraphs [ J ]. Discrete Math, to appear.
  • 9GURALNICK R, LI C H, PRAEGER C E, et al. On orbital partitions and exceptionality of primitive permutation groups[ J ]. Trans Amer Math Soc, 2004,356:4 857-4 872.
  • 10PANJiang-min.Orders of periodic elements of general linear groups over any field.云南大学学报:自然科学版,2005,27(5):269-271.

共引文献4

同被引文献30

  • 1徐保根.关于图的符号星控制数[J].华东交通大学学报,2004,21(4):116-118. 被引量:17
  • 2徐保根.两类图的符号星控制数[J].华东交通大学学报,2005,22(4):146-148. 被引量:12
  • 3徐明曜.有限群导引[M].北京:科学出版社,1987.62.
  • 4Bondy J A,Murty U S R. Graph Theory with Applica-tions [ M]. London :The Macmillan Press, 1976.
  • 5WANG C. Subgraphs with orthogonal factorizations ofdigraphs [ J ]. European Journal of Combinatorics,2012,33:1015 -1021.
  • 6Yeh W C, Lin Y C, Chung Y Y. Performance analysisof cellular automata Monte Carlo simulation for estima-ting network reliability [J]. Expert Systems with Appli-cations ,2010,37(5) :3537 -3544.
  • 7Harary F. Graph Theory[ M]. New York:Westview Press, 1994.
  • 8Xu B G. On signed edge domination number of graphs[J]. Discrete Math,2001,239:179 - 189.
  • 9Saei R, Sheikholeslami S M. Signed star k -subdomination numbers in graphs [ J ]. Discrete Appl Math,2008,156:3066 -3070.
  • 10Jahanbekam S. A comment to: Two classes of edge domination in graphs [ J]. Discrete Appl Math,2009,157:400- 401.

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部