期刊文献+

分布式数据库全局最大频繁项集增量更新算法 被引量:3

Incremental Updating Algorithm of Global Maximum Frequent Itemsets in Distributed Database
下载PDF
导出
摘要 随着分布式数据库记录的不断增加,需要对已挖掘出的全局最大频繁项集进行增量更新。在已经提出的快速挖掘全局最大频繁项集算法(FMMFI)的基础上,提出了分布式数据库全局最大频繁项集增量更新算法(IUGMFI)。IUGMFI算法利用了FMMFI算法已经挖掘出的分布式数据库全局频繁项目和全局最大频繁项集。挖掘增量数据库的全局频繁项目,构建增量数据库的FP-tree,挖掘出增量数据库的全局最大频繁项集,采用自上而下的剪枝策略更新全局最大频繁项集。理论分析和实验结果表明,IUGMFI算法是快速而有效的。 On the basis of the fast mining algorithm for global maximum frequent itemsets,an incremental updating algorithm,named as IUGMFI algorithm,was proposed.The algorithm made use of the global frequent items and global maximum frequent itemsets in distributed database.Firstly,the global frequent items were mined in incremental distributed database.Secondly,the FP-tree was constructed in incremental distributed database.Thirdly,the global maximum frequent itemsets were mined in incremental distributed database.Finally,the global maximum frequent itemsets were updated by the strategy of top-down.Theoretical analysis and experimental results showed that IUGMFI algorithm is fast and effective.
作者 何波 闫河
出处 《四川大学学报(工程科学版)》 EI CAS CSCD 北大核心 2012年第3期112-117,共6页 Journal of Sichuan University (Engineering Science Edition)
基金 国家自然科学基金资助项目(61173184) 深圳市生物 互联网 新能源产业发展专项资金资助项目(CXB201005250021A) 深圳市高性能数据挖掘重点实验室资助项目(2012kF03)
关键词 数据挖掘 频繁模式树 全局最大频繁项集 增量更新算法 data mining FP-tree global maximum frequent itemset increasing updating algorithm
  • 相关文献

参考文献10

二级参考文献56

  • 1陆介平,杨明,孙志挥,鞠时光.快速挖掘全局最大频繁项目集[J].软件学报,2005,16(4):553-560. 被引量:27
  • 2何波,王华秋,刘贞,王越.快速挖掘频繁项集的并行算法[J].计算机应用,2006,26(2):391-392. 被引量:5
  • 3赵辉,王黎明.一个基于网格服务的分布式关联规则挖掘算法[J].小型微型计算机系统,2006,27(8):1544-1548. 被引量:9
  • 4Han J W, Pei J, Yin Y. Mining frequent patterns without candidate generation[C]. Proc of the 2000 ACM SIGMOD Int Conf on Management of Data. Dallas: ACM Press, 2000: 1-12.
  • 5Bayardo R J. Efficiently mining long patterns from databases[C]. Proc of the ACM SIGMOD Int Conf on Management of Data. New York: ACM Press, 1998: 85-93.
  • 6Park J S, Chen M S, Yu P S. Efficient parallel data Mining for association rules[C]. Proc of the 4th Int Confon Information and Knowledge Management: Baltimore, 1995: 31-36.
  • 7Agrawal R, Shafer J C. Parallel mining of association Rules[J]. IEEE Trans on Knowledge and Data Engineering, 1996, 8(6): 962-969.
  • 8Cheung D W, Han J W, Ng W T, et al. A fast distributed algorithm for mining association rules[C]. Proc of IEEE 4th Int Conf on Management of Data. Miami Beach, 1996: 31-34.
  • 9Han J.W.,Kamber M..Data Mining:Concepts and Techniques.Beijing:Higher Education Press,2001.
  • 10Agrawal R.,ImielinSki T.,Swami A..Mining association rules between sets of items in large database.In:Proceedings of the ACM SIGMOD International Conference on Managementof Data,Washington,DC,1993,2:207-216.

共引文献248

同被引文献45

  • 1冯洁,陶宏才.一种频繁项集的快速挖掘算法[J].微计算机信息,2007(18):164-166. 被引量:7
  • 2RichardJRoiger MichaelWGeatz著 翁敬农译.数据挖掘教程[M].北京:清华大学出版社,2003..
  • 3Sun Jianghong. Large Rotating Machinery Fault Diagnosis andKnowledge Rules Acquiring Based on Improved RIPPER [C] //2009 Intelligent Computer Technology and Automation, Changsha,2009: 549-552.
  • 4Huang L.A Survey on Web information retrieval technologies,ECSL Technical Report[R].State University of New York,2000.
  • 5Zamir O.Clustering Web documents:a phrase-based method for grouping search engine results[D].Washington DC:University of Washington,1999.
  • 6Steinbach M,Karypis G,Kumar V.A comparison of document clustering techniques[C]//Proceedings of KDD-2000Workshop on Text Mining,2000.
  • 7Fung B C M,Wang K,Ester M.Hierarchical document clustering using frequent itemsets[C]//Proceedings of SIAM International Conference on Data Mining,2003.
  • 8Hotho A,Staab S,Stumme G.Ontologies improve text document clustering[C]//Proceedings of the 3rd IEEE International Conference on Data Mining,2003:541-544.
  • 9Kowalski G.Information retrieval systems:theory and implementation[M].[S.l.]:Kluwer Academic Publishers,1997.
  • 10Zamir O,Etzioni O,Madani O,et al.Fast and intuitive clustering of Web documents[C]//Proceedings of the 3rd International Conference on Knowledge Discovery and Data Mining,1997:287-290.

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部