期刊文献+

基于Curvelet变换和支持向量机的磁瓦表面缺陷识别方法 被引量:13

Defect Detection on Magnetic Tile Surfaces Based on Fast Discrete Curvelet Transformand Support Vector Machine
下载PDF
导出
摘要 针对磁瓦表面缺陷对比度低、自动识别困难的问题,作者提出了一种对磁瓦图像应用快速离散Curvelet变换(FDCT)提取特征,并用支持向量机(SVM)分类器进行分类的磁瓦微小缺陷自动识别方法。该方法首先对磁瓦图像做分块处理,并对各分块图像应用FDCT,计算分解系数的l2范数,获得磁瓦不同方向的纹理频域特征;然后以归一化的分解系数l2范数作为支持向量机分类器的特征向量,对图像做出分类。对不同缺陷占比的图像进行实验测试,结果显示,当缺陷部分占分块图像的比例在1/64以上时正确识别率大于83%。 Difficulties exist in automatically inspecting surface defects because of the low intensity image contrast.To overcome these difficulties,a textures analysis method for detecting defects on the magnetic tile surfaces was described.In this methodology the original image was divided into several equal sized squares,and decomposed based on a fast discrete curvelet transform(FDCT) at different scales and orientations.Then the l2 norms on the curvelet coefficients were calculated as the feature vector for support vector machine(SVM) classifier.The experimental results showed that the defects retrieval accuracy achieved 83% when defects accounted for more than 1/64 of magnetic tile image.
出处 《四川大学学报(工程科学版)》 EI CAS CSCD 北大核心 2012年第3期147-152,共6页 Journal of Sichuan University (Engineering Science Edition)
基金 国家科技支撑计划课题资助项目(2006BAF01A07) 四川省高新技术产业重大关键技术资助项目(2010GZ0051)
关键词 CURVELET变换 表面缺陷 纹理 支持向量机 Curvelet transform surface defects textures support vector machines
  • 相关文献

参考文献14

  • 1严俊龙,郑晓曦,李铁源.磁瓦表面缺陷自动检测系统的研究[J].计算机工程与应用,2009,45(36):228-231. 被引量:12
  • 2徐光明,宋钰,郑晓曦.磁瓦表面夹层缺陷的检测和识别方法[J].五邑大学学报(自然科学版),2010,24(1):27-32. 被引量:2
  • 3Tsneg Y H,Tsai D M. Defect detection of uneven brightness in low-contrast images using basis image representation[ J]. Pattern Recognition 2010,43 ( 3 ) : 1129 - 1141.
  • 4Nencini F, Garzelli A, Baronti S, et al. Remote sensing im- age fusion using the curvelet transform [ J ]. Information Fu- sion ,2007,8 ( 2 ) : 143 - 156.
  • 5Starck J L, Murtagh F, Candes E J,et al. Gray and color im- age contrast enhancement by the curvelet transform [ J ]. IEEE Transactions on Image Processing, 2003,12 (6) : 706 -717.
  • 6Starck J L, Candes E J, Donoho D L. The Curvelet Transform for Image Denoising [ J ]. IEEE Transaction on Image Proeessing,2002,11 (6) :670 - 684.
  • 7Feng Kun, Jiang Zhinong, He Wei, et al. A recognition and novelty detection approach based on curvelet transform, non- linear PCA and SVM with application to indicator diagram diagnosis [ J ]. Expert Systems with Applications, 2011,38 (10) : 12721 - 12729.
  • 8Candes E J, Donoho D L. Curvelets--a surprisingly effective non-adaptive representation for objects with edges [ R]. Nashville : Vanderbilt University Press, 1999.
  • 9Candes E J, Donoho D L. New tight frames of curvelets and optimal representations of objects with piecewise C2 singular- ities [ J ]. Commnications Pure Applied Mathematics, 2004, 57(2) :219 -266.
  • 10Candes E J. , Donoho D L. Continuous Curvelet transform: I. Resolution of the wavefront set [ J ]. Applied and Compu- tation Harmonic Analysis, 2005,19 ( 2 ) : 162 - 197.

二级参考文献11

共引文献12

同被引文献86

引证文献13

二级引证文献79

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部