期刊文献+

基于精确参数化定义的复合材料桨叶剖面扭转刚度计算 被引量:1

Cross-section torsion stiffness calculation of composite rotor blade based on accurate parametric definition
原文传递
导出
摘要 在系统地对桨叶结构设计流程、结构分析计算方法进行研究的基础上,通过对桨叶组件参数化定义及桨叶铺层三维几何建模方法的扩展,自动获得各桨叶剖面相关组件的几何和材料信息,并基于闭口薄壁梁理论,给出了复合材料桨叶剖面扭转刚度的高效计算方法.该方法一方面充分考虑了复合材料蒙皮铺层的复杂结构以及梁、肋等组件的细节几何模型,避免了三维几何模型简化误差;另一方面,提出了铺层块、等效厚度以及长厚比概念,并采用解析表达,将模型几何解构完全集成于桨叶设计过程自动完成,十分便于工程应用.实例验证表明:提出的方法能够快速、可靠地完成桨叶剖面扭转刚度计算,显著提高设计分析效率. A new method was proposed to improve the calculation of the composite rotor’s torsion stiffness.First,the flow of the blade’s structure design and analysis were studied.Then,all the material and geometry profile information of the blade construction were obtained by expanding the methods of blade parametric module definition and blade geometric modeling.Finally,the efficient calculation equations for cross-section torsion stiffness of composite rotor blade were derived based on the thin-box beam theory.One of the advantages of the proposed method lies in that the precision loss of model simplification is eliminate by taking the blade’s refined geometric model.On the other side,by importing the ply block,equivalent thickness and slenderness radio conception,and due to the analytical form of the calculation and the automatic geometric extraction,this method is quite suitable for practical use.Experimental results demonstrate that the method can complete the blade structure design and analysis efficiently.
出处 《航空动力学报》 EI CAS CSCD 北大核心 2012年第5期1087-1095,共9页 Journal of Aerospace Power
关键词 复合材料 旋翼 桨叶 参数化设计 结构分析 composite material rotor blade parametric design structure analysis
  • 相关文献

参考文献20

  • 1路录祥.直升机结构与设计[M]北京:航空工业出版社,2009.
  • 2Fung Y C. An introduction to the theory of aeroelasticity[M].New York:Dover Publi Inc,1993.
  • 3Bauchau (D A. A beam theory for anisotropic materials[J].Journal of Applied Mechanics,Transactions of the ASME,1985,(02):416-422.
  • 4Giavotto V,Borri M,Mantegazza P. Anisotropic beam theory and applications[J].Computers and Structures,1983,(1-4):403-413.
  • 5Hodges D H,Atilgan A R,Cesnik C E S. On a sim-plified strain energy function for geometrically nonlinear behavior of anisotropic beams[J].Composites Engineer ing,1992,(5 7):513-526.
  • 6Johnson E R,Vasiliev V V,Vasiliev D V. Anistotropic thin walled beams with closed cross-sectional contours[J].AIAA Journal,2001,(12):2389-2393.
  • 7Vlasov V Z. Thin-walled elastic beams[M].Washington D C:National Science Foundation,1961.
  • 8Mansfield E H,Sobey A J. The fiher composite helicopter blade,Part 1.stiffness properties Part 2: prospects for aeroelastic tailoring[J].AERONAUTICAL QUARTERLY,1979,(02):413-449.
  • 9Mansfield E H. The stiffness of a two-cell anisotropic tube[J].AERONAUTICAL QUARTERLY,1981,(04):338-353.
  • 10Chandra R,Chopra I. Experimental and theoretical analysis of composite I-beams with elastic couplings[J].AIAA Journal,1991,(12):2197-2206.

二级参考文献18

  • 1卢新来,刘虎,武哲.直升机概念设计中的部件参数化[J].北京航空航天大学学报,2006,32(1):46-49. 被引量:3
  • 2Hodges D H. A review of composite rotor blade modeling[J]. AIAA Journal,1990, 28(3) : 561-565.
  • 3Walsh J L, Young K C, Pritehard J I, et al. Integrated aerodynamic/dynamic/structural optimization of helicopter rotor blades using multilevel decomposition [R]. Tech Rep 3465, NASA, 1995.
  • 4Smith E, Chopra I. Formulation and evaluation of an analytical model for composite box beams[J]. Journal of the American Helicopter Society, 1991, 36(3):23-35.
  • 5Cesnik C E S, Hodges D H. VABS: a new concept for composite rotor blade cross-sectional modeling [J]. Journal of the American Helicopter Society, 1997, 42(1): 27-38.
  • 6Lemanski S L, Weaver P M, Hill G F J. Design of composite helicopter rotor blades to meet given cross-sectional properties[J]. Aeronautical Journal, 2005, 109(1100):471-475.
  • 7Worndle R. Calculation of the cross section properties and the shear stresses of composite rotor blades [J]. Vertica, 1982(6) : 111-129.
  • 8张呈林.直升机部件设计[M].南京:航空专业教材编审组,1986:66-75.
  • 9Foye R L. Evolution of the application of composite materials to helicopter [J]. Journal of the American Helicopter Society, 1981, 26(4): 5- 15.
  • 10Walsh J L, Young K C, Pritchard J I, et al. Integrated aerodynamic/dynamic/structural optimization of helicopter rotor blades using multilevel decomposition[R]. NASA- TP 3465, 1995.

共引文献16

同被引文献15

  • 1Peters D A, Rossow W P, Korn A, et al. Design of heli- copter rotor blades for optimum dynamic characteristics. Journal of Computers and Mathematics with Applications 1986, 12(1): 85 -109.
  • 2Lira J, Chopra I. Aeroelastic optimization of a helicopter rotor. Proceedings of 44th Annual Forum of the American Helicopter Society, 1988: 545-558.
  • 3Walsh J I., Young K C, Pritchard J I, et al. Integrated aerodynamic dynamic structural optimization of helieopter rotor blades using multilevel decomposition. NASA Tech- nical Paper 3465, 1995.
  • 4Tarzanin F, Young D K. Boeing rotoreraft experience with rotor design and optimization. AIAA -1998-4733, 1998.
  • 5Guo J X, Xiang J W. Composite rotor blade design optimi- zation for vibration reduction with aeroelastic constraints. Chinese Journal of Aeronautics, 2004, 17(3): 152-158.
  • 6Chattopadhyay A, Walsh J L. Application of optimization methods to helicopter rotor blade design. Structural Opti- mization, 1990(2): 11 -22.
  • 7Pritchard J I, Adelman H M, Walsh J L, et al. Optimi- zing tuning masses for helicopter rotor blade vibration re- duction and comparison with test data. Journal of Air- craft, 1993, 30(6): 906-910.
  • 8Venkatesan C, Friedmann P P, Yuan K A. A new sensi- tivity analysis for structural optimization of composite ro tor blade. Mathematical and Computer Modeling, Special Issue on Rotorcrah Modeling: Part 1, 1994, 19(3-4) 1-25.
  • 9Glaz B, Friedmann P P, Liu L. Surrogate based optimiza- tion of helicopter rotor blades for vibration reduction in forward flight. Industrial Application, 2008, 35 (4): 341-363.
  • 10路录祥,王新洲,王遇波,等.直升机结构与设计.北京:航空工业出版社.2009.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部