摘要
提出一种基于非劣排序的多目标优化免疫遗传算法。算法基于非劣排序对种群进行分类来评价个体的价值,在选择操作中引入个体浓度保持种群多样性。采用免疫克隆操作为产生新种群和算法实现全局搜索提供了基础,采用遗传种群与父代群体锦标赛竞争的方式保留最优解。仿真实验结果表明:算法在收敛性和分布性方面要优于NSGA-II算法。
The paper represented An Immune Genetic Multi-objective Optknization Algorithms based on non-dominated sort-ing. Based 9n Immune Genetic Algorithm, the algorithm evaluated individuals fitting values in current population using Paretosorting method, used concentration as selecdon criteria to keep population good diversity. This algorithm also used the immuneclone operationn to generate new population and implemented global searching process. Then a tournament selection betweenparent and genetie population was adopted to obtain optimal solutions. The simulation results showed that the algorithm wasbetter than NSGA-II algorithm in convergence and distribution capabilities.
出处
《成都信息工程学院学报》
2012年第2期136-141,共6页
Journal of Chengdu University of Information Technology
关键词
计算机应用
智能工程
非劣排序
多目标
免疫遗传算法
浓度
免疫克隆
computer application
intelligent engineering
non-dominated sorting
multi-object
immune genetic algo-rithm
concentration
immune clone