期刊文献+

估计复合材料有效弹性常数界限的综合方法 被引量:1

An Approach to Predicting Bounds of Effective Properties of Composite Materials
下载PDF
导出
摘要 回顾了有效弹性模量估计的各种方法,分析了与常规有效弹性常数估计的上限VB、下限RB和Hashin-Shtrikman上限(HSB+)、下限(HSB-)相应的均匀化对比材料的取值情况,以及这些界限之间的相互关系,提出了以有效弹性常数常规估计—Voigt估计、Reuss估计分别作为均匀化对比材料,从而得到较Hashin-Shtrikman上下限更紧的新上下限. This paper reviews various methods to predict the overall effective elastic properties of homogeneous isotropic composites based on the meso-micromechanics. Values of the homogeneous isotropic comparison materials are analyzed corresponding to the upper bound (VB) and lower bound (RB) of common prediction of the effective elastic properties, and the upper bound ( HSB) and lower bound ( HSB - ) of Hashin-Shtrikman estimates, and the relationships for these bounds are also dicussed. New bounds tighter than Hashin-Shtrikman bounds are presented by taking the common estimates, the Voigt estimate and the Reuss estimate, as homogeneous comparison materials.
出处 《郑州大学学报(工学版)》 CAS 北大核心 2012年第3期33-35,39,共4页 Journal of Zhengzhou University(Engineering Science)
基金 广西省自然科学基金资助项目(200911MS115 201010LX215) 广西柳州市应用技术研究与开发计划项目(2010020603)
关键词 微观力学 颗粒增强复合材料 有效弹性常数 上下限 micromeehanics particulate reinforced composite effective property upper and lower bounds
  • 相关文献

参考文献11

  • 1NAKAMURA T, WANG T, SAMPATH S. Determination of properties of graded materials by inverse analysis and instrumented indentation[ J]. Acta Materialia, 2000, 48 : 4293 - 4306.
  • 2MURAT. Micromechanics of defects in solids, second revised edition [ M ]. Dordrecht, The Netherlands: Martinus Nijhoff Publishers, 1987.
  • 3HILL R. A self-consistent mechanics of composite materials[ J]. Journal of the Mechanics and Physics of Solids, 1965, 13:213-222.
  • 4BENVENISTE Y. A new approach to the application of Mori-Tanaka's theory in composite materials[J]. Mechanics of Materials, 1987, 6:147-157.
  • 5WAKASHIMA K, TSUKAMOTO H. Mean-field micro-mechanics model and its application to the analysis of thermomechanical behavior of composite materials [ J ]. Materials science and engineering, 1991, 146:291 -316.
  • 6ClIO J R, HA D Y. Averaging and finite-element discretization approaches in the numerical analysis of functionally graded materials [J]. Materials science and engineering , 2001, A302:187 - 196.
  • 7RAVICHANDRAN K S. Elastic properties of two- phase composites[ J]. Journal of the American Ceramic Society, 1994, 77:1178 - 1184.
  • 8GRUJICIC M, ZHANG Y. Determination of effective elastic properties of functionally graded materials using Voronoi cell finite element method[J]. Materials Sci- ence and Engineering, 1998, A251:64-76.
  • 9NEMAT-NASSER S, HORI M. Micro-mechanics: overall properties of heterogeneous materials[ M ]. Amsterdam, The Netherlands: Elsevier Science Publishers, 1993.
  • 10HASHIN Z, SHTRIKMAN S. Avariational approach to the theory of the elastic behavior of multiphase materials[J]. Journal of the Mechanics and Physics of Solids, 1963, 11: 127- 140.

同被引文献5

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部