期刊文献+

多级扰动法——静力扣除及其在非静力模式设计中的可应用性 被引量:1

A Multilevel Perturbation Method-Hydrostatic Deduction and Its Applicability to Designing the Nonhydrostatic Model
下载PDF
导出
摘要 在尺度分析的基础上,利用大气垂直运动方程中各项量级的分布特点,提出了多级扰动法。通过它可以使该方程中量级最大的垂直气压梯度力项(VPGF)和重力项(G)的相应扰动项的量级随级次n的增加明显减小,而其他项的量级不变;而且,方程中最大的垂直截断误差的量级也随n的增加而减小,直到高级扰动项不再是扰动方程中仅有的最大项时为止。另外,因截断误差的量级和被离散项的量级成正比,在方程中VPGF的截断误差就是该方程中最大的垂直截断误差,可以表示该方程的总的垂直截断误差。故垂直气压梯度力扰动项的量级的减小还可以使该方程中最大的垂直截断误差减小,用多级扰动法可以使最大垂直截断误差控制在可容许的范围内,使垂直气压梯度力扰动项和重力扰动项计算准确,可以较好地描写对流活动。这样,最大垂直截断误差对倾向的影响就不致歪曲或掩盖垂直柯氏力项和曲率项对倾向的贡献。还可以证明:扰动平衡方程的解是静力扰动。多级扰动法实质上是多次利用扰动平衡方程的解,从低级扰动中扣除其所含和解大小相同的静力扰动部分,使高一级扰动项的量级减小,达到其与其他项量级接近,以减小方程中的最大量级差的一种方法。而且,n的变化不影响方程的性质。可以说,多级扰动法使大气基本态垂直廓线有较大的改善,使其与大气实际垂直廓线很接近,通过静力平衡,使基本模式大气不包含垂直声波。 Based upon the results from the scale analysis of the vertical equation of motion for the atmosphere and forecast experience, especially numerical weather forecast experience, the multilevel perturbation method has been proposed. It can be proved that in the vertical perturbation equation the magnitude of the perturbation decreases with n, n=1, 2, ... But, on the other hand, since the magnitude of truncation error is proportional to that of the discretized term, in the vertical equation of motion or the perturbation equation the truncation error of the discretized vertical pressure gradient force (VPGF) is the largest vertical truncation error, which can represent the total vertical truncation error in the equation. Hence the decrease in the magnitude of Vt'GF with n is favorable for reduction of the total vertical truncation error and use of the method can limit such an error within a permissible range, to make computation of VPGF more correct and describe convective activity better than ever. Therefore the impact of the lar- gest truncation error on the tendency of w would be unable to distort or cover up the contribution of vertical Coriolis force term and that of curvature term to the tendency. Further, it can be proved that the solution of level n perturbation balance equation is a hydrostatic perturbation. The method is, substantially, a tool to be used to deduct the hydrostatic part from level n perturbation, in order to reduce the level n^l perturbation in magnitude. In this way a high level perturbation VPGF may easily come closer to the other terms without perturbation in magnitude. Furthermore, because the sum of VPGF and gravity does not vary with n, the physical properties of the vertical equation of motion would not change. Therefore, the method may be named the multilevel perturbation hydrostatic deduction method. It can diminish the difference between the improved basic state vertical profile and the actual atmospheric vertical profile quite small, and under hydrostatic equilibrium in the vast majority of the model atmosphere there would he almost no vertical sound waves.
作者 廖洞贤 朱禾
出处 《大气科学》 CSCD 北大核心 2012年第3期645-656,共12页 Chinese Journal of Atmospheric Sciences
基金 国家自然科学基金资助项目40875029 40745032
关键词 多级扰动法 尺度分析 修正的基本态垂直廓线 multilevel perturbation method, scale analysis, improved basic state vertical profile
  • 相关文献

参考文献27

  • 1Arakawa A. 1966. Computational design for long-term numerical integrations of the equations of atmospheric motion [J]. J. Comput. Phys., 1 (1): 119- 143.
  • 2Arakawa A, Lamb V R. 1997. Computational design of the basic dynamical processes of UCLA general circulation model [M]//Methods in Computational Physics. New York: Academic Press, 174 - 264.
  • 3Arakawa A, Suarez M J. 1983. Vertical differencing of the primitive equations in sigma coordinates [J]. Moru Wea. Rev., 111 (1): 34-45.
  • 4Bubnova R, Hello G, Benard P, et al. 1995. Integration of the fully elastic equations cast in the hydrostatic pressure terrain-following coordinate in the frame work of the ARPEGR/Aladin NWP system [J]. Mon. Wea. Rev., 123 (2) : 515 - 535.
  • 5COte, Jean, Gravel S, Methot A, et al. 1998. The operational CMC-MRB Global Environmental Multiscale (GEM) model. Part I: design considerations and formulation [J]. Mon. Wea. Rev., 126 (6): 1373 - 1395.
  • 6Cullen M J P, Davies T, Mawson M H, et al. 1997. An overview of numerical methods for the next generation UK NWP and climate model [J]. The A. J. Robert Memorial Volume, Canadian Meteorological and Oceanographic Society, 35:425 -444.
  • 7Dudhia J. 1993. A nonhydrostatic version of the Penn State-NCAR mesoseale model: Validation tests and simulation of an Atlantic cyclone and cold front [J]. Mon. Wea. Rev., 121 (5): 1493-1513.
  • 8Dudhia J, 1995. Reply to Comments on "A nonhydrostatie version of the Penn State/NCAR mesoscale model: Validation tests and simulation of an Atlantic cyclone and cold front" by J. Steppeler [J]. Mon. Wea. Rev., 123 (8): 2573- 2575.
  • 9Gallus W A Jr, Raneie M. 1996. A non-hydrostatic version of the NMC's regional Eta model [J]. Quart. J. Roy. Meteor. Soe., 122 (531): 495 - 513.
  • 10季仲贞,王斌,曾庆存.1995.完全能量守恒差分法及其应用[M]∥数值天气预报的若干新技术.北京:气象出版社,26-46.

二级参考文献14

  • 1左瑞亭,曾庆存,张铭.季风及季风与西风带相互关系的数值模拟研究[J].大气科学,2004,28(1):7-22. 被引量:33
  • 2纪立人,陈嘉滨,张道民,汪厚君.数值预报模式动力框架发展的若干问题综述[J].大气科学,2005,29(1):120-130. 被引量:29
  • 3曾庆存.数值天气预报的数学物理基础[M].北京:科学出版社,1980.252-290.
  • 4张玉玲.中尺度大气动力学导论[M].北京:气象出版社,1999.21-25,147-149.
  • 5曾庆存.大气运动的特征参数和动力学方程[J].气象学报,1963,33(4):472-483.
  • 6Robert A. The semi-implicit method. Numerical Methods Used in Atmospheric Models. Vol Ⅱ GARP Publications Series, No. 17 WMO, 1979. 417-437
  • 7Miyakoda K, Strickler R F, Nappo C J, et al.The effect of horizontal grid resolution in an atmospheric circulation model. J. Atmos. Sci. , 1971, 28 (4): 481-499
  • 8Houghton D D. Spatial resolution impacts on National Weather Service nested model simulation.Ninth Conference on NWP, AMS, 1991
  • 9Yanai M, Nitta T. Finite difference approximation for barotropic instability problem. J. Meteor. Soc. Japan, 1968, 46 (5): 389-403
  • 10Chamey J. The use of the primitive equations of motion in numerical prediction. Tellus Ⅶ, 1955, 7 (1): 22-26

共引文献21

同被引文献11

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部