摘要
In this work, a series of polyethyleneimine (PEI) functionalized commercial silica gel were prepared by wet impregnation method and used as CO2 sorbent. The as-prepared sorbents were characterized by N2 adsorption, FT-1R and SEM techniques. CO2 capture was tested in a fixed bed reactor using a simulated flue gas containing 15.1% CO2 in a temperature range of 25-100 ~C. The effects of sorption temperature and amine content on CO2 uptake of the adsorbents were investigated. The silica gel with a 30 wt% PEI loading manifested the largest CO2 uptake of 93.4 mgcoz/gadsorbent (equal to 311.3 mg^oz/gPEI) among the tested sorbents under the conditions of 15.1% (v/v) CO2 in N2 at 75 ~C and atmospheric pressure. Moreover, it was rather low-cost. In addition, the PEI-impregnated silica gel exhibited stable adsorption-desorption behavior during 5 consecutive test cycles. These results suggest that the PEI-impregnated silica gel is a promising and cost-effective sorbent for CO2 capture from flue gas and other stationary sources with low CO2 concentration.
In this work, a series of polyethyleneimine (PEI) functionalized commercial silica gel were prepared by wet impregnation method and used as CO2 sorbent. The as-prepared sorbents were characterized by N2 adsorption, FT-1R and SEM techniques. CO2 capture was tested in a fixed bed reactor using a simulated flue gas containing 15.1% CO2 in a temperature range of 25-100 ~C. The effects of sorption temperature and amine content on CO2 uptake of the adsorbents were investigated. The silica gel with a 30 wt% PEI loading manifested the largest CO2 uptake of 93.4 mgcoz/gadsorbent (equal to 311.3 mg^oz/gPEI) among the tested sorbents under the conditions of 15.1% (v/v) CO2 in N2 at 75 ~C and atmospheric pressure. Moreover, it was rather low-cost. In addition, the PEI-impregnated silica gel exhibited stable adsorption-desorption behavior during 5 consecutive test cycles. These results suggest that the PEI-impregnated silica gel is a promising and cost-effective sorbent for CO2 capture from flue gas and other stationary sources with low CO2 concentration.