期刊文献+

不同培养时间β-磷酸三钙/骨髓基质干细胞组织工程骨在兔脊柱后外侧融合中的作用研究 被引量:2

Effect of different incubation durations of β-TCP/BMSCs tissue engineering bone on the posterolateral spinal fusion in rabbits
原文传递
导出
摘要 目的探讨β-磷酸三钙/骨髓基质干细胞(β—TCP/BMSCs)组织工程骨培养不同时间对兔脊柱后外侧融合的作用。方法分离培养BMSCs并经体外成骨诱导后接种至β-TCP上,分别培养1、3、7d后植入新西兰大白兔体内,行脊柱后外侧融合。利用噻唑蓝、扫描电镜、荧光染色等方法观察体外细胞活力和生长情况;术后12周处死动物,行X线、显微-CT、组织学及组织形态计量学检测,观察新生骨形成和融合情况。结果1、3、7d组细胞活力分别为(0.19±0.02)A/g、(0.48±0.06)A/g、(0.61±0.05)A/g,3组间两两比较差异均有统计学意义(F=175.570,P=0.000)。扫描电镜及荧光染色显示细胞生长良好;术后12周1d组X线评分、脊椎融合率、BMC、BV/TV、新生骨面积百分比均低于于3、7d组,差异均有统计学意义(P〈0.05),但3、7d组比较差异均无统计学意义(P〉0.05)。结论β-TCP/BMSCs组织工程骨培养时间明显影响兔脊柱后外侧融合效果,但融合效果并不随培养时间延长而明显提高,提示培养时间存在“临界值”。 Objective To investigate appropriate incubation time of bone marrow stem cells (BMSCs) combined with β-triealeium phosphate (β-TCP) for the posterolateral spinal fusion in rabbits. Methods The rabbit BMSCs were isolated and cultured to induce osteoblasts in vitro. The same amounts of osteoblasts were seeded onto β-TCP for static incubation of 1, 3 and 7 days respectively before implantation into New Zealand rabbits for the posterolateral spinal fusion. The cell viability was observed by MTT, scanning electron microscopy and fluorescent staining. The rabbits were sacrificed 12 weeks postoperation for radio- logical, histological and histomorphometry observations of new bone formation and lumbar fusion. Results The cell viability was 0. 19 ± 0.02 A/g for incubation of one day, 0.48 ± 0. 06 A/g for incubation of 3 days and 0. 61 ± 0. 05 A/g for 7 days, with a significant between-group difference ( F = 175. 570, P = 0. 000). Scanning electron microscopy and fluorescent staining showed fine growth of the cells. At 12 weeks the X-ray score, spinal fusion rate, bone mineral content (BMC), bone volume fraction (BV/TV) value, percentage of new bone formation for incubation of one day were all significantly lower than those for incubation of 3 and 7 days ( P 〈 0. 05 ), but there was no significant difference between incubation of 3 days and incubation of 7 days ( P 〉 0. 05 ). Conclusions The posterolateral spinal fusion is significantly affected by the incubation time of β-TCP/BMSCs, but the incubation time is not proportional to the fusion effect, suggesting that the incubation time may have a critical value.
出处 《中华创伤骨科杂志》 CAS CSCD 北大核心 2012年第6期518-522,共5页 Chinese Journal of Orthopaedic Trauma
基金 国家自然科学基金(31170913)
关键词 磷酸钙类 骨髓细胞 脊柱融合术 组织工程 Calcium phosphates Bone marrow cells Spinal fusion Tissue engineering
  • 相关文献

参考文献7

  • 1Arrington ED,Smith WJ,Chambers HG. Complications of iliac crest bone graft harvesting[J].Clinical Orthopaedics and Related Research,1996,(329):300-309.doi:10.1002/eji.200939889.
  • 2李德强,戴尅戎,汤亭亭,卢建熙.利用灌注式生物反应器体外构建大段组织工程化骨的实验研究[J].中华创伤骨科杂志,2009,11(5):455-459. 被引量:1
  • 3Epstein NE. An analysis of noninstrumented posterolateral lumbar fusions performed in predominantly geriatric patients using lamina autograft and beta tricalcium phosphate[J].Spine Journal,2008.882-887.doi:10.1038/pcan.2009.8.
  • 4Shirasu N,Ueno T,Hirata Y. Bone formation in a rat calvarial defect model after transplanting autogenous bone marrow with beta-tricalcium phosphate[J].Acta Histochemica,2010.270-277.doi:10.1016/j.acthis.2009.01.003.
  • 5Epstein NE. Beta tricalcium phosphate:observation of use in 100posterolateral lumbar instrumented fusions[J].Spine Journal,2009.630-638.doi:10.1089/fpd.2010.0576.
  • 6翟永清,干耀恺,秦安,戴魁戎.富集骨髓基质干细胞复合多孔β-磷酸三钙促进骨缺损修复的实验研究[J].中华创伤骨科杂志,2009,11(11):1058-1061. 被引量:3
  • 7Mankani MH,Kuznetsov SA,Robey PG. Formation of hematopoietic territories and bone by transplanted human bone marrow stromal cells requires a critical cell density[J].Experimental Hematology,2007.995-1004.doi:10.1016/j.exphem.2007.01.051.

二级参考文献21

  • 1郑诚功.组织工程与细胞生物力学的进展[J].中华创伤骨科杂志,2006,8(10):901-902. 被引量:4
  • 2Xie Y, Hardouin P, Zhu Z, et al. Three-dimensional perfusion culture system for stem cell proliferation inside the critical-size beta-tricalcium phosphate scaffold. Tissue Eng, 2006, 12: 3535-3543.
  • 3Hatano H, Ogose A, Hotta T, et al. Extracorporeal irradiated autogenous osteochondral graft: a histological study. J Bone Joint Surg (Br), 2005, 87: 1006-1011.
  • 4Kofron MD, Li X, Laurencin CT. Protein- and gene-based tissue engineering in bone repair. Curr Opin Bioteehnol, 2004, 15: 399-405.
  • 5Li WJ, Tuli R, Huang X, et al. Multilineage differentiation of human mesenehymal stem cells in a three-dimenslonal nanofibrous scaffold. Biomaterials, 2005, 26: 5158-5166.
  • 6van den Dolder J, Bancroft GN, Sikavitsas VI, et al. Flow perfusion culture of marrow stem osteoblasts in titanium fiber mesh. J Biomed Mater Res A, 2003, 64: 235-241.
  • 7Janssen FW, Oostra J, Oorschot A, et al. A perfusion bioreactor system capable of producing clinically relevant volumes of tissue-engineered bone: in vivo bone formation showing proof of concept. Biomaterials, 2006, 27: 315-323.
  • 8Bjerre L, Banger CE, Kassem M, et al. Flow perfusion culture of human mesenchymal stem cells on silicate-substituted triealcium phosphate scaffolds. Biomaterials, 2008, 29: 2616-2627.
  • 9Sikavitsas VI, Bancroft GN, Hohorf HL, et al. Mineralized matrix deposition by marrow stem osteoblasts in 3D perfusion cuhure increases with increasing fluid shear forces. Proc Nail Acad Sci USA, 2003, 100: 14683-14688.
  • 10Majors AK, Boehm CA, Nitro H, et al. Characterization of human bone marrow stromal cells with respect to osteoblastic differentiation. J Orthop Res, 1997, 15: 546-557.

共引文献2

同被引文献30

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部