期刊文献+

基于EMD方法和加窗的QRS波群检测算法 被引量:1

QRS Complex Detection Using Empirical Mode Decomposition and Windowing Technique
原文传递
导出
摘要 提出了一种基于经验模态分解(EMD)方法和自适应加窗技术的QRS波群检测算法,该算法主要是利用Hilbert-Huang变换提出适合QRS波群检测的EMD方法,利用该算法对sddb数据库中第30号信号和mitdb数据库中第208号信号进行处理,得到R波的检测结果;同时,利用自适应加窗技术对Q点和S点的检测技术进行分析。通过对MIT/BIT心率异常数据库的部分数据进行R波检测,结果表明,本文提出的算法具有很好的检测效果,其R波的平均正确检测率达到了99.62%,QRS波群的平均敏感性为98.91%,相应的平均特异性为99.35%。 A QRS complex detection algorithm based on empirical mode decomposition (EMD) and adaptive windo- wing technique is proposed in this paper. In this algorithm we mainly used Hilbert-Huang transform to propose EMD method suitable for QRS complex detection, with which the 30th signal in sddb database and the 208th signal in mit- db database could be processed, and then obtained R wave detection results. At the same time, Q and S points' dect- ection technique was analyzed With adaptive windowing technique. The detection results, through proceeding R wave detection on part data of MIT/BIT arrhythmia database, showed that the proposed algorithm in this paper had a very good detection effect, and that its average correct detection rate of R wave reached 99.62%, its average sensitivity of QRS complex was 98.91%, and the corresponding average specificity was 99.35%.
出处 《生物医学工程学杂志》 EI CAS CSCD 北大核心 2012年第3期411-414,423,共5页 Journal of Biomedical Engineering
基金 黑龙江省自然科学基金资助项目(F200912)
关键词 经验模态分解 加窗技术 Hilbert—Huang变换 QRS波群检测 Empirical mode decomposition (EMD) Windowing teehnique Hilbert-Huang transform QRS complex detection
  • 相关文献

参考文献9

  • 1LI C, ZHENG C, TAI C. Detection of ECG characteristic points using wavelet transforms[J]. IEEE Trans Biomed Eng, 1995, 42(1): 21-28.
  • 2HU Y H, TOMPKINS W J, URRUSTI J L, et al. Applications of artificial neural networks for ECG signal detection and classification[J]. J Electrocardiol, 2003, 26 (1): 66-73.
  • 3OSOWSKI S, HOAI L T. ECG beat recognition using fuzzy hybrid neural network[J]. IEEE Trans Biomed Eng, 2001, 48(11) : 1265-1271.
  • 4POLI R, CAGNONI S, VALLI G. Genetic design of optimum linear and nonlinear QRS detectors[J]. IEEE Trans Biomed Eng, 1995, 42(11): 1137-1141.
  • 5PAL R, MITRA M. Measurement of ECG characteristic points using multiresolution wavelet analysis based selective coefficient method[J]. Elsevier Measurement, 2010, 43(2) :255-261.
  • 6HUANG N E, SHEN Z, LONG R L, et al. The empirical mode decomposition and hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Mathematical, Physical and Engineering Sciences, 1998, 454(1971): 903-995.
  • 7陈文利,莫智文.基于复值小波分解的QRS波群检测算法[J].生物医学工程学杂志,2010,27(2):257-259. 被引量:1
  • 8赵文哲,方滨,沈毅,王普.心电信号中R波检测方法的比较研究[J].生物医学工程学杂志,2009,26(1):55-58. 被引量:11
  • 9ZHUWF, ZHAO H M, CHENX P. Anew QRSdetector based on empirical mode decomposition [C]//ICSP2010 Proceedings, 2010: 1757-1760.

二级参考文献13

  • 1Bert-Uwe Kohler, Carsten Henning, Reinhold Orglmeister. The principle of software QRS detection. IEEE Engineering in Medicine and Biology, Jan/Feb, 2002,21 : 42
  • 2Morizet-Mahoudeaux P, Moreau C, Moreau D, et al. Single microprocessor-based system for online ECG arrhythmia analysis. Med Biol Eng Comput, 1981,19(4) : 497
  • 3Masahiko Okada. A digital filter for the QRS complex detection. IEEE Transaction on Biomedical Engineering, 1979,26 (9) : 700
  • 4Ramchurn SK, Baijnath D, Murray A. Low-dimensional chaotic behaviour in heart rate variability. Computers in Cardiology, 2000; 27 :473
  • 5杨正荣.以小波转换为基础的QRS波侦测方法[D].台湾高雄:国立中山大学,2004:6-14.
  • 6PAN J,TOMPKINS W J. A real-time QRS detection algorithm [J]. IEEE Trans Biomed Eng. ,1985,32(3):230-236.
  • 7LI C W, ZHENG C X, TAI C F. Detection of ECG eharaeteristie points using wavelet transforms[J]. IEEE Transactions on Biomedical Engineering, 1995, 42(1):21-29.
  • 8KHOBRAGADE K S,DESHMUKH R B. ECG analysis using wavelet transforms [J]. IETE J Res,1997,43(6) :423-482.
  • 9MARTINEZ J P, ALMEIDA R, OLMOS S, et al. A waveletbased ECG delineator: evaluation on standard database[J]. IEEE Trans Biomed Eng, 2004,51(4): 570-581.
  • 10CHEN W L,MO Z W,GUO W. Detection of QRS complexes using wavelet transforms and golden section search[J]. 2007 International Conference on Intelligent Systems and Knowledge Engineering, 2007: 14-18.

共引文献10

同被引文献12

引证文献1

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部