期刊文献+

Constructing quasi-random subsets of Z_N by using elliptic curves

Constructing quasi-random subsets of Z_N by using elliptic curves
下载PDF
导出
摘要 Let ε : y^2 = x3 + Ax + B be an elliptic curve defined over the finite field Zp(p 〉 3) and G be a rational point of prime order N on ε. Define a subset of ZN, the residue class ring modulo N, asS:={n:n∈ZN,n≠0,(X(nG)/p)=1} where X(nG) denotes the x-axis of the rational points nC and (*/P) is the Legendre symbol. Some explicit results on quasi-randomness of S are investigated. The construction depends on the intrinsic group structures of elliptic curves and character sums along elliptic curves play an important role in the proofs. Let ε : y^2 = x3 + Ax + B be an elliptic curve defined over the finite field Zp(p 〉 3) and G be a rational point of prime order N on ε. Define a subset of ZN, the residue class ring modulo N, asS:={n:n∈ZN,n≠0,(X(nG)/p)=1} where X(nG) denotes the x-axis of the rational points nC and (*/P) is the Legendre symbol. Some explicit results on quasi-randomness of S are investigated. The construction depends on the intrinsic group structures of elliptic curves and character sums along elliptic curves play an important role in the proofs.
出处 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2012年第1期105-113,共9页 高校应用数学学报(英文版)(B辑)
基金 Supported by the National Natural Science Foundation of China(No.61170246) the Program for New Century Excellent Talents in Fujian Province University of China(No.JK2010047) the Open Funds of State Key Laboratory of Information Security (Chinese Academy of Sciences)(No.01-01-1)
关键词 elliptic curve quasi-random subset quasi-randomness character sum Legendre symbol. elliptic curve, quasi-random subset, quasi-randomness, character sum, Legendre symbol.
  • 相关文献

参考文献15

  • 1F R K Chung, R L Graham. Quasi-random set systems, J Amer Math Soc, 1991, 4: 151-196.
  • 2C Dartyge, A Sarkozy. Large families of pseudorandom subsets formed by power residues, Uniform Distribution Theory, 2007, 2(2): 73-88.
  • 3I E Shparlinski. Pseudorandom number generators from elliptic curves, In: Recent Trends in Cryp- tography, Contemporary Mathematics, Amer Math Soc, 2009, 477: 121-141.
  • 4L Merai. Construction of pseudorandom binary sequences over elliptic curves using multiplicative characters, Publ Math Debrecen, 2012 (to appear).
  • 5C Dartyge, E Mosaki, A Sarkozy. On large families of subsets of the set of the integers not exceeding N, Ramanujan J, 2009, 18(2): 209-229.
  • 6F R K Chung, R L Graham. Quasi-random subsets of ZN, J Combin Theory Set A, 1992, 61: 64-86.
  • 7M Caragiu, R A Johns, J Gieseler. Quasi-random structures from elliptic curves, J Algebra, Num- ber Theory Appl, 2006, 6(3): 561-571.
  • 8Z X Chen. Elliptic curve analogue of Legendre sequences, Monatsh Math, 2008, 154(1): 1-10.
  • 9R Lidl, H Niederreiter. Finite Fields, Addison-Wesley, 1983.
  • 10P H T Beelen, J M Doumen. Pseudorandom sequences from elliptic curves, In: Finite Fields with Applications to Coding Theory, Cryptography and Related Areas-2002, Springer, 37-52.

二级参考文献17

  • 1Chung F. R. K., Graham R. L., Quasi-random set systems, Journal of the American Mathematical Society, 1991, 4: 151-196.
  • 2Chung F. R. K., Graham R. L., Quasi-random subsets of Zn, Journal of Combinatorial Theory Series A, 1992, 61: 64-86.
  • 3Chung F. R. K., Graham R. L., Wilson R. M., Quasi-random graphs, Combinatorica, 1989, 9: 345-362.
  • 4Gowers W. T., A new proof of Szemeredi's theorem, Geometric and Functional Analysis, 2001, 11: 465-588.
  • 5Szemeredi E., On sets of integers containing no k elements in arithmetic progression, Acta Arithmetica, 1975, 27: 199-245.
  • 6Caragiu M., Johns R. A., Gieseler J., Quasi-random structures from elliptic curves, JP Journal of Algebra, Number Theory and Applications, 2006, 6: 561-571.
  • 7Mauduit C., Sarkozy A., On finite pseudorandom binary sequencs I: measure of pseudorandomness, the Legendre symbol, Acta Arithmetica, 1997, 82: 365-377.
  • 8Fouvry E., Michel P., Rivat J., Sarkozy A., On the pseudorandomness of the signs of Kloosterman sums, Journal of the Australian Mathematical Society, 2004, 77:425-436.
  • 9Goubin L., Mauduit C., Sarkozy A., Construction of large families of pseudorandom binary sequences, Journal of Number Theory, 2004, 106:56 69.
  • 10Gyarmati K., On a family of pseudorandom binary sequences, Periodica Mathematica Hungarica, 2004, 49: 45-63.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部