期刊文献+

基于遗传神经算法与证据理论的柴油机燃油系统故障诊断 被引量:1

Diesel engine fault diagnosis based on AGNNA and evidence theory
原文传递
导出
摘要 利用遗传算法优化神经网络的初始权值和阈值,进而提高神经网络诊断故障时的准确性和快速性,解决了网络本身固有的收敛速度慢和容易陷入局部极小值问题.结合证据理论,对多信息源的柴油机燃油系统故障数据进行融合,从而更加准确、全面地反映故障状态,提高诊断的可靠性. Initial weights and thresholds of neural network are optimized with AGNNA, and both the problems of network it- self inherent slow convergence speed and easy to get into the lo- cal minimum value are solved, which enhanced the accuracy and rapidity of neural network in fault diagnosis. In addition, com- bining with evidence theory, more information sources on the diesel engine fuel system fault data are fused, and the fault states are reflected more accurately and comprehensively so as to achieve the reliability of the diagnosis.
出处 《大连海事大学学报》 CAS CSCD 北大核心 2012年第2期79-83,共5页 Journal of Dalian Maritime University
基金 内蒙古民族大学科学研究基金资助项目(NMD1107)
关键词 遗传神经算法 证据理论 柴油机燃油系统 故障诊断 AGNNA evidence theory diesel engine fuel sys-tem fault diagnosis
  • 相关文献

参考文献8

二级参考文献17

共引文献12

同被引文献16

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部