摘要
脑-机接口中特征提取算法是脑电信号处理的关键步骤。提出一种基于核方法的核共空域子空间分解特征提取算法,将用于多通道两类别分类的共空域子空间分解算法推广到核空间。应用新算法对BCI竞赛Ⅱ的数据集Ⅳ进行实验仿真。实验中核函数使用的是线性核函数,求解空域滤波器时,为了减小计算的压力,在原空间对每一个试验的训练数据进行层次聚类,训练的分类器为最近邻分类器,实验的测试集结果为84%,与数据集Ⅳ的竞赛胜利者的分类结果相同。
Feature extraction is a key step in EEG signal processing for brain-computer interface system.A new kernel CSSD approach based on kernel method was proposed in this paper.In this approach,conventional CSSD used in multichannel and two class problem was extended to kernel space.We applied the Kernel CSSD approach to dataset IV of BCI competition II by computer simulations.A linear kernel function was used in the experiments.When spatial filter was obtained,a hierarchical clustering method was used in train datasets to solve the complexity problem.After that classification was performed using K-nearest neighbor classifier.The accuracy of the test datasets was 84%,which is same with test accuracy of the winner of dataset IV.
出处
《中国生物医学工程学报》
CAS
CSCD
北大核心
2012年第3期428-433,共6页
Chinese Journal of Biomedical Engineering
基金
国家自然科学基金(60504035
61074195)
河北自然科学基金(F2010001281
A2010001124)
关键词
脑机接口
特征提取
共空域子空间分解
核方法
层次聚类
brain computer interface(BCI)
feature extraction
common spatial subspace decomposition(CSSD)
kernel method
hierarchical clustering