期刊文献+

核共空域子空间分解特征提取算法研究 被引量:1

Kernel CSSD-Based Feature Extraction Algorithms
下载PDF
导出
摘要 脑-机接口中特征提取算法是脑电信号处理的关键步骤。提出一种基于核方法的核共空域子空间分解特征提取算法,将用于多通道两类别分类的共空域子空间分解算法推广到核空间。应用新算法对BCI竞赛Ⅱ的数据集Ⅳ进行实验仿真。实验中核函数使用的是线性核函数,求解空域滤波器时,为了减小计算的压力,在原空间对每一个试验的训练数据进行层次聚类,训练的分类器为最近邻分类器,实验的测试集结果为84%,与数据集Ⅳ的竞赛胜利者的分类结果相同。 Feature extraction is a key step in EEG signal processing for brain-computer interface system.A new kernel CSSD approach based on kernel method was proposed in this paper.In this approach,conventional CSSD used in multichannel and two class problem was extended to kernel space.We applied the Kernel CSSD approach to dataset IV of BCI competition II by computer simulations.A linear kernel function was used in the experiments.When spatial filter was obtained,a hierarchical clustering method was used in train datasets to solve the complexity problem.After that classification was performed using K-nearest neighbor classifier.The accuracy of the test datasets was 84%,which is same with test accuracy of the winner of dataset IV.
出处 《中国生物医学工程学报》 CAS CSCD 北大核心 2012年第3期428-433,共6页 Chinese Journal of Biomedical Engineering
基金 国家自然科学基金(60504035 61074195) 河北自然科学基金(F2010001281 A2010001124)
关键词 脑机接口 特征提取 共空域子空间分解 核方法 层次聚类 brain computer interface(BCI) feature extraction common spatial subspace decomposition(CSSD) kernel method hierarchical clustering
  • 相关文献

参考文献13

  • 1Wolpaw JR, Birbaumer N, Mcfarland DJ, et al. Brain-computer interfaces for communication and control [ J ]. Clinical Neurophysiology, 2002, 113 (6) : 767 - 791.
  • 2Kiles ZJ. The quantitative extraction and topographic mapping of the abnormal components in the clinical EEG [ J ]. Clinical Neurophysiology, 1991, 79(6): 440-447.
  • 3Miller GJ, Pfurtscheller G, Flyvbjerg H. Designing optimal spatial filters for single-trial EEG classification in a movement task [ J ]. Clinical Neurophysiology, 1999, 110 ( 5 ) : 787 - 798.
  • 4Liao X, Yao DZ, Wu D. Combining spatial filters for the classification of single-trial EEG in a finger movement task [ J ]. IEEE Trans Biomedical Engineering, 2007, S4(5 ) : 821 - 831.
  • 5Vapnik V. The nature of statistical learning theory [ M ]. (2rid edition). New York: Springer, 2000, 1:30.
  • 6Miller KR. , Mika S, Rtsch G. An introduction to kernel-based learning algorithms [J].IEEE Transaction on Neural Networks, 2001, 12(2) : 181 -202.
  • 7Ge ZQ, Yang C J, Song ZH. Improved kernel PCA-based monitoring approach for nonlinear processes [ J ]. Chemical Engineering Science, 2009, 44 (9) : 2245 - 2255.
  • 8Sun SL, Zhang CS. An optimal kernel feature extractor and its application to EEG signal classification [ J ]. Neurocomputing, 2005, 69( 13 - 15) : 1743 - 1748.
  • 9Zhang J, Tang J, Yao L. Optimizing spatial filters with kernel methods for BCI applications [ C ]// Society of Photo-Optical Instrumentation Engineers (SPIE) Conference. Wuhan: 2007 : 6790, 67903V.
  • 10Wang YH, Berg P, Scherg M. Common spatial subspace decomposition applied to analysis of brain responses under multiple task conditions: a simulation study [ J ]. Clinical Neurophysiology 1999, 110(4): 604-614.

二级参考文献8

  • 1Pfurtseheller G, Neuper C. Motor imagery activates primary sensorimotor area in humans[J]. Neuroscience Letters, 1997, 239:65 - 68.
  • 2Currana E A,Stokesa B M J. Learning to eontrol brain activity:A review of the production and control of EEG components for driving brain - computer interface ( BCI ) systems [ J ]. Brain and cognition,2003,51 (3) :326 -336.
  • 3Pfurtscheller G,Aranibar A. Event - related cortical desynchronizafion detected by power measurements of scalp EEG [J ]. Electroencephalography and Clinical Neurophysiology, 1977,42(8) :817 - 826.
  • 4Pfurtschdler G,Neuper C. Motor Imagery and Direct Brain- Computer Communication[J]. Proceedings of IEEE, 2001,89 (7) :1123 - 1134.
  • 5Peters B O,Pfurtschdler G, Flyvbjerg H. Automatic differentiation of multichannel EEG signals[J]. IEEE Tram BME, 2001,48(1) :111 - 116.
  • 6Domhege G,Blartkertz B,Curio G, et al. Boosting bit rates in noninvasive EEG singletrial classification by feature combination and paradigm[J ]. IEEE Tran. Biomed. Eng., 2004, 51 : 993 - 1002.
  • 7Fukunaga K. Introduction to statistical pattern recognition [ M]. second ed. Boston: Academic Press, 1990.
  • 8Muller - Gerking J, Pfurtscller G, Hyvbjerg H. Designing optimal spatial filters for single - trial EEG classification in a movement task[ J ]. Electroenc. Clin. Neurophys, 1999 ( 5 ) : 787 - 798.

共引文献12

同被引文献6

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部