期刊文献+

液相沉淀-多元醇还原法合成LiFePO_4/C正极材料的电化学性能 被引量:2

Electrochemical performance of LiFePO_4/C cathode materials synthesized by liquid-precipitation and polyol reduction route
下载PDF
导出
摘要 以钛白工业副产物七水硫酸亚铁为铁源,用液相沉淀制得无定形FePO4·xH2O前躯体,然后在多元醇中与锂源反应制得LiFePO4材料,过程在常压下进行,无需煅烧与惰性气体保护。用XRD、SEM及电化学分析考察多元醇乙二醇(EG)、二甘醇(DEG)和三甘醇(TEG)对材料物相和形貌的影响。结果表明:三甘醇所得样品的锂离子扩散速率最小;此样品的晶粒尺寸最小,结晶最完整,无明显杂相生成。在室温下放电倍率为0.1C、1C和5C时,该正极材料的首次放电比容量分别达到148.8、129.3和102.8 mA·h/g,其碳包覆样品的首次放电比容量分别达到155.6、139.9和112.2 mA·h/g,且循环性能良好。 Amorphous FePO4-xH20 was prepared by liquid precipitation using FeSO4·7H2O by-product of titanium dioxide industry, and LiFePO4 was synthesized by a polyol route under ordinary pressure without further calcinating or inert gas protection. The effects of different polyols of EG, DEG and TEG on the phase composition and morphology were investigated by X-ray diffraction(XRD), scanning electron microscope (SEM) and electrochemical analysis. The results demonstrate that LiFePO4 prepared by TEG shows the smallest diffusion rate of lithium ion, the smallest particle size, the best crystalline integrity and the highest phase purity. The LiFePO4 prepared by TEG has the first discharge specific capacities of 148.8, 129.3 and 102.8 mA.h/g at 0.1C, 1C and 5C discharge rate and room temperature, respectively. The improved first discharge specific capacity of its carbon-coating sample reaches 155.6, 139.9 and 112.2 mA-h/g at 0.1C, 1C and 5C, respectively, exhibiting a favorable capacity cycling maintenance.
出处 《中国有色金属学报》 EI CAS CSCD 北大核心 2012年第5期1311-1318,共8页 The Chinese Journal of Nonferrous Metals
基金 国家"十一五"科技支撑计划资助项目(2007BAE58B07)
关键词 LIFEPO4 液相沉淀 多元醇 锂离子电池 正极材料 LiFePO4 liquid-precipitation polyol lithium-ion battery cathode material
  • 相关文献

参考文献6

二级参考文献76

  • 1童汇,胡国华,胡国荣,彭忠东,张新龙.锂离子电池正极材料LiFePO_4/C的合成研究[J].无机化学学报,2006,22(12):2159-2164. 被引量:11
  • 2PADHI A K,NANJUNDAWAMY K S,GOODENOUGH J B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries[J]. J Electrochem Soc, 1997, 144 (4): 1188-1194.
  • 3YANG S, ZAVALIJ P Y, WHITTNGHAM M S. Hydrothermal synthesis of lithium iron phosphate cathodes[J]. Electrochemistry Communications, 2001, 3: 505-508.
  • 4PROSINI P P, ZANE D, PASQUALI M. Improved electrochemical performance of a LiFePO4 based composite cathode [J]. Electrochemica Acta, 2001,46(23): 3517-3523.
  • 5YANG S, SONG Y, ZAVALIJ P Y, et al. Reactivity, stability and electrochemical behavior of lithium iron phosphates [J]. Electrochemistry Communication, 2002,4(3):239-244.
  • 6HERSTEDT M, STJERNDAHL M, NYTEN A. Surface chemical of carbon-treated LiFePO4 particles for Li-ion battery cathodes studied by PES[J]. Electrochemical and Solid-State Letters, 2003,6:202-206.
  • 7CHUNG S Y, BLOKING J T, CHIANG Y M. Electronically conductive phospho-olivine as lithium storage electrodes [J]. Nat Mater, 2002,2:123-128.
  • 8CHUNG S Y,CHIANG Y M. Microscale measurements of the electrical conductivity of doped LiFePO4 [J].Electrochem and Solid-State Lett, 2003,6(12):A 278-A 281.
  • 9XU Z H, XU L, LAI Q Y, et al. A PEG assisted sol-gel synthesis of LiFePO4 as cathodic material for lithium ion cells[J]. Materials Research Bulletin, 2007, 42: 883-891.
  • 10YANG M R, KE W H, WU S H. Preparation of LiFePO4 powders by co-precipitation[J]. J Power Sources, 2005, 146(1/2): 539-543.

共引文献68

同被引文献9

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部