期刊文献+

Superplastic extensibility deformation of Al-3%Mn alloy with submicrometer grain size

亚微米晶Al-3%Mn合金的超塑延展性变形行为(英文)
下载PDF
导出
摘要 Submicrometer-grained (SMG) Al-3%Mn (mass fraction) alloy specimens with initial grain size of -0.3 μm were produced by ball milling for 3 h. The Al-3%Mn specimens which were cold rolled with a strain rate of 1×10^-3- 1×10^-2 s-1 at room temperature show high extensibility to failure more than 2500%. Microstructures of pure Al and Al-3%Mn alloy at as-milled and cold-rolled state were examined using X-ray diffraction and transmission electron microscopy (TEM). Based on the microstructure analysis, it is established that the mechanism of the continued plastic deformation in SMG Al-3%Mn alloy consists of dislocation slip, grain boundary sliding companied by dynamic recovery and recrystallization, and dynamic recrystallization is a main control factor of the large plastic deformation. 采用球磨法制备晶粒尺寸为0.3μm的亚微米晶Al-3%Mn(质量分数)合金。Al-3%Mn合金在室温下轧制时,表现为极高的延展性(超过2500%)。采用透射电镜(TEM)观察球磨态和冷轧态的纯铝和Al-3%Mn合金组织;采用X射线衍射对比分析组成,发现连续塑性变形机制包括位错滑移和晶界滑动,同时还有动态回复和再结晶,而动态再结晶是大塑性变形的主要控制机制。
出处 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第5期1035-1040,共6页 中国有色金属学报(英文版)
关键词 aluminium alloys mechanical alloying cold rolling deformation structure 铝合金 机械合金化 冷轧 变形组织
  • 相关文献

参考文献20

  • 1CHOKSHI A H, MUKHERJEE A K, LANGDON T G. Superplasticity in advanced materials [J]. Mater Sci Eng R, 1993, 10: 237-274.
  • 2WANG J, IWAHASHI Y, HORITA Z, FURUKAWA M, NEMOTO M, VALIEV R Z, LANGDON T G. Enhanced grain growth in an Al-Mg alloy with ultrafine grain size [J]. Mater Sci Eng A, 1996, 216: 41-46.
  • 3VALIEV R Z, KRASILNIKOV N A, TSENEV N K. Plastic deformation of alloys with submicron-grained structure [J]. Mater Sci Eng A, 1991, 137: 35-40.
  • 4LIU F C, MA Z Y. Contribution of grain boundary sliding in low-temperature superplasticity of ultrafine-grained aluminum alloys [J]. Scripta Mater, 2010, 62: 125-128.
  • 5MA Z Y, LIU F C, MISHRA R S. Superplastic deformation mechanism of an ultrafine-grained aluminum alloy produced by friction stir processing [J]. Acta Mater, 2010, 58: 4693-470.
  • 6SHENG L Y, ZHANG W, GUO J T, WANG Z S, OVCHARENKO V E, ZHOU L Z, YE H Q. Microstructure and mechanical properties of Ni3Al fabricated by thermal explosion and hot extrusion [J]. Intermetallics, 2009,17: 572-577.
  • 7LEE S, UTSUNOMIYA A, AKAMATSU H, NEISHI K, FURUKAWA M, HORITA Z, LANGDON G T. Influence of scandium and zirconium on grain stability and superplastic ductilities in ultrafine-grained Al-Mg alloys[J]. Acta Mater, 2002, 50: 553-564.
  • 8XU C, FURUKAWA M, HORITA Z, LANGDON T G. Severe plastic deformation as a processing tool for developing superplastic metals [J]. Journal of Alloy and Compound, 2004, 378: 27-34.
  • 9MA Y, FURUKAWA M, HORIT A Z, NEMOTO M, VALIEV R Z, LANGDON T G. Significance of microstructure control for superplastic deformation and forming [J]. Mater Trans JIM, 1996,37: 336-339.
  • 10LANGDON T G. The characteristics of grain refinement in materials processed by severe plastic deformation[J]. Rev Adv Mater Sci, 2006, 13:6-14.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部