摘要
Copper (Cu) doped beryllium (Be) thin films were deposited on silicon substrates by using a simple ion beam sputtering method, which can also realize the varying of Cu doping concentration. Detailed morphological and structural characterizations of the samples clearly disclose a microstructure evolution of films upon doping Cu. Doping Cu can effectively suppress film grain growth, causing a small grain size as well as uniform size distribution. Furthermore, doping Cu affects the crystallographic texture of film, which leads to the formation of more compact film structure. In particular, the surface smoothness of the doped films is significantly improved, which makes them promising candidates for various applications.
利用离子束溅射法在硅基底上制备高纯Be薄膜并实现Cu元素的可控掺杂,利用X射线能谱、扫描电镜、X射线衍射以及透射电镜等对Cu掺杂Be薄膜进行表征分析。研究结果表明:Cu元素在Be膜内分布均一,且Cu掺杂量对Be薄膜的微观结构有显著影响。Cu掺杂能抑制Be晶粒生长,Be晶粒随着薄膜中Cu含量的增多而减小,并且尺寸分布更加均匀;Cu掺杂影响Be晶粒的生长取向,使其形成更为紧凑的薄膜结构。这些因素使得掺杂Cu的Be薄膜的表面粗糙度明显降低。
基金
Project (60908023) supported by the National Natural Science Foundation of China