摘要
本文讨论在自适应网格上间断Galerkin有限元离散系统的局部多水平算法.对于光滑系数和间断系数情形,利用Schwarz理论分析了算法的收敛性.理论和数值试验均说明算法的收敛率与网格层数以及网格尺寸无关.对强间断系数情形算法是拟最优的,即收敛率仅与网格层数有关.
In this paper, the local multilevel methods for discontinuous Galerkin finite element on adaptively refined meshes are considered. By the abstract Schwarz theory, we analyze the convergence rate of the proposed algorithms for smooth and highly discontinuous coefficients separately. It is shown that in the case of smooth coefficients, the convergence rate of the local multilevel methods is independent of mesh sizes and mesh levels. If the coefficients have large jumps, the algorithms are sub-optimal, i.e., the convergence rate is only dependent on mesh levels.
出处
《中国科学:数学》
CSCD
北大核心
2012年第5期409-428,共20页
Scientia Sinica:Mathematica
基金
国家自然科学基金(批准号:11171335)
国家重点基础研究专项经费(批准号:2011CB309701)资助项目
关键词
间断有限元
局部多水平算法
间断系数
悬点
discontinuous Galerkin finite element, local multilevel methods, highly discontinuous coefficients, hanging nodes