期刊文献+

一类Kirchhoff板弯问题自适应高阶混合元方法及理论分析

A class of high order adaptive mixed element methods for Kirchhoff plate bending problems
原文传递
导出
摘要 本文针对Kirchhoff板弯问题提出了一个基于高阶Hellan-Herrmann-Johnson(简记为H-H-J)方法的自适应有限元算法,分析了它的收敛性和计算复杂度.证明了算法在执行过程中,相应的拟能量误差会以几何级数单调衰减,从而得到收敛性.利用此单调下降性质,进一步给出了算法的计算复杂度.推导过程中的一个关键步骤是建立基于平衡方程的单元误差表示(error indicator)与平衡方程右端载荷震荡项(data oscillation)的局部等价关系. In this paper,we deal with convergence and complexity of an adaptive algorithm for Kirchhoff bending plate problems.The algorithm is based on high order Hellan-Herrmann-Johnson methods(k 2,where k denotes the polynomial degree of the discrete moment-field space).We derive a contraction property for the scaled sum of the energy-norm error,the error indicators and the data oscillation involving a given transverse load in two consecutive adaptive loops.Then a complexity estimate in terms of the number of degrees of freedom is developed.The key ingredient in the analysis is a local equivalence of the data oscillation and the element error indicator arising from the equilibrium equation.
出处 《中国科学:数学》 CSCD 北大核心 2012年第5期473-489,共17页 Scientia Sinica:Mathematica
基金 国家自然科学基金(批准号:11171219 11161130004) 上海市教育委员会E-研究院建设计划(编号:E03004) 上海市重点学科(编号:N.S30405) 上海师范大学科研计划(编号:SK201202)资助项目
关键词 高阶Hellan-Herrmann-Johnson方法 自适应有限元方法 收敛性 计算复杂度 Kirchhoff板弯问题 high order Hellan-Herrmann-Johnson methods adaptive finite element methods convergence computational complexity Kirchhoff plate bending problems
  • 相关文献

参考文献53

  • 1Ainsworth M. Robust a posteriori error estimation for nonconforming finite element approximation. SIAM J Numer Anal, 2005, 42:2320-2341.
  • 2Ainsworth M. A posteriori error estimation for lowest order Raviart-Thomas mixed finite elements. SIAM J Sci Comp, 2007, 30:189-204.
  • 3Ainsworth M, Oden J T. A Posteriori Error Estimation in Finite Element Analysis. In: Pure and Applied Mathematics. New York: Wiley-Interscience, 2000.
  • 4Alonso A. Error estimators for a mixed method. Numer Math, 1996, 74:385-395.
  • 5Bangerth W, Rannacher R. Adaptive Finite Element Methods for Differential Equations. In: Lectures in Mathematics, ETH-Zfirich. Basel: Birkhaiuser, 2003.
  • 6Carstensen C. A posteriori error estimate for the mixed finite element method. Math Comp, 1997, 66:465-476.
  • 7Carstensen C, Hu J. A unifying theory of a posteriori error control for nonconforming finite element methods. Numer Math, 2007, 107:473-502.
  • 8Dari E, Duran R, Padra C, et al. A posteriori error estimators for nonconforming finite element methods. RAIRO Mod61 Math Anal Numer, 1996, 30:385-400.
  • 9Lovadina C, Stenberg R. Energy norm a posteriori error estimates for mixed finite element methods. Math Comp, 2006, 75:1659-1674.
  • 10Verffirth R. A Review of A Posteriori Estimation and Adaptive Mesh-Refinement Techniques. Chichester: Wiley- Teubner, 1996.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部