期刊文献+

求解凸规划及鞍点问题定制的PPA算法及其收敛速率 被引量:2

On the convergence rate of customized proximal point algorithm for convex optimization and saddle-point problem
原文传递
导出
摘要 线性约束的凸优化问题和鞍点问题的一阶最优性条件是一个单调变分不等式.在变分不等式框架下求解这些问题,选取适当的矩阵G,采用G-模下的PPA算法,会使迭代过程中的子问题求解变得相当容易.本文证明这类定制的PPA算法的误差界有1/k的收敛速率. The first-order optimality condition of linearly constrained convex optimization and saddle-point problems is a monotone variational inequality.Under the framework of variational inequality,by properly selecting a matrix G,the subproblems of proximal point algorithm under G-norm can be solved easily during the iteration progress.We derive the O(1/k) convergence rate of such customized proximal point algorithm.
作者 何炳生 申远
机构地区 南京大学数学系
出处 《中国科学:数学》 CSCD 北大核心 2012年第5期515-525,共11页 Scientia Sinica:Mathematica
基金 教育部博十点基金(批准号:20110091110004)资助项日
关键词 凸优化 单调算子 G-模下的PPA算法 收敛速率 convex optimization monotone operator proximal point algorithm under G-norm convergence rate
  • 相关文献

参考文献18

  • 1Chambolle A, Pock T. A first-order primal-dual algorithm for convex problems with applications to imaging. J Math Imaging Vis, 2011, 40:120-145.
  • 2He B S, Yuan X M. A contraction method with implementable proximal regularization for linearly constrained convex programming. Available at: http://www.optimization-online.org/DB_HTML/2010/11/2817.htmi.
  • 3Nemirovski A. Prox-method with rate of convergence O(1/t) for variational inequality with Lipschitz continuous monotone operators and smooth convex-concave saddle point problems. SIAM J Optim, 2005, 15:229-251.
  • 4Nesterov Y. Smooth minimization of non-smooth functions. Math Program Ser A, 2005, 103:127-152.
  • 5Nesterov Y. Gradient methods for minimzing composite objective function. CORE discussion paper, 2007/76. Uni- versit6 Catholique de Louvain, Belgium.
  • 6Martinet B. Regularisation, d'in4quations variationelles par approximations suceesives. Rev F'rancaise d'Inform Recherche Oper, 1970, 4:154-159.
  • 7Rockafellar R T. Monotone operators and the proximal point algorithm. SIAM J Control Optim, 1976, 14:877-898.
  • 8Rockafellar R T. Augmented Lagrangians and applications of the proximal point algorithm in convex programming. Math Oper Res, 1976, 1:97-116.
  • 9Eckstein J, Bertsekas D P. On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math Program, 1992, 55:293-318.
  • 10Ha C. A generalization of the proximal point algorithm. SIAM J Control Optim, 1990, 28:503- 512.

同被引文献13

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部