摘要
线性约束的凸优化问题和鞍点问题的一阶最优性条件是一个单调变分不等式.在变分不等式框架下求解这些问题,选取适当的矩阵G,采用G-模下的PPA算法,会使迭代过程中的子问题求解变得相当容易.本文证明这类定制的PPA算法的误差界有1/k的收敛速率.
The first-order optimality condition of linearly constrained convex optimization and saddle-point problems is a monotone variational inequality.Under the framework of variational inequality,by properly selecting a matrix G,the subproblems of proximal point algorithm under G-norm can be solved easily during the iteration progress.We derive the O(1/k) convergence rate of such customized proximal point algorithm.
出处
《中国科学:数学》
CSCD
北大核心
2012年第5期515-525,共11页
Scientia Sinica:Mathematica
基金
教育部博十点基金(批准号:20110091110004)资助项日
关键词
凸优化
单调算子
G-模下的PPA算法
收敛速率
convex optimization
monotone operator
proximal point algorithm under G-norm
convergence rate