期刊文献+

改进的BiShrink与DTCWT相结合的遥感图像去噪 被引量:4

Remote sensing image denoising based on the combination of the improved BiShrink and DTCWT
原文传递
导出
摘要 基于双树复数小波变换(DTCWT)良好的平移不变性和多方向选择性,以及尺度内DTC-WT系数的领域相关性,提出了一种bivariate shrinkage(BiShrink)的改进算法,对遥感图像进行去噪处理。实验结果表明,经本文算法降噪后,图像的峰值信噪比(PSNR)得到显著提高,较好地保持图像的边缘和细节信息,并抑制混淆现象。 By considering the advantages of the dual tree complex wavelet transfer(DTCWT)in shift invariance and multi-direction selection,as well as the neighboring coefficients of DCTWT,an improved bivariate shrinkage(BiShrink) algorithm is presented to denoise the remote sensing images.Experimental results show that the proposed algorithm gets better peak signal-to-noise ratio(PSNR) than other methods obviously.In terms of visual quality,the proposed algorithm can achieve images with more details and edges,smooth profiles and restricted aliasing.
出处 《光电子.激光》 EI CAS CSCD 北大核心 2012年第6期1201-1205,共5页 Journal of Optoelectronics·Laser
基金 科技部国际科技合作(2009DFA12870) 教育部促进与美大地区科研合作与高层次人才培养资助项目
关键词 双树复数小波变换(DTCWT) BIVARIATE shrinkage(BiShrink)阈值 领域相关性 遥感图像去噪 dual-tree complex wavelet transfer(DTCWT) bivariate shrinkage(BiShrink) threshold neighboring coefficients remote sensing image denoising
  • 相关文献

参考文献4

二级参考文献46

共引文献47

同被引文献38

  • 1WANG Li-qiantXIAO Liang,ZHANG Jun,et al. New imagerestoration method associated with tetrolets shrinkageand weighted anisotropic total variation [J].Signal Pro-cessing,2013,93(4) ;661-670.
  • 2Nair M S,Mol P M A. Direction based adaptive weightedswitching median filter for removing high density impulsenoise[J] . Computers and Electrical Engineering,2013,39(2):663-689.
  • 3LU Ching-ta,CHOU Tzu-chun. Denoising of salt-and-pep-per noise corrupted image using modified directional-weighted-median filter [J]. Pattern Recognition Letters,2012,33(10):1287月12日95.
  • 4WANG Zhou,ZHANG David. Progressive switching medi-an filter for the removal of impulse noise from highly cor-rupted images[J]. IEEE Transactions on Circuits and Sys-tems II: AnalogandDigital SignalProcessing,1999,46(1):78-80.
  • 5Chan R H,Ho C W,Nikolova M. Salt and pepper noise re-moval by median type noise detectors and detail preser-ving regularization [J]. IEEE Transactionson Image Pro-cessing, 2005,14(10) :1479-1485.
  • 6Srinivasan K S,Ebenezer D. A new fast and efficient de-cision based algorithm, for removal of high-density impulsenoises[J]. IEEE Signal Processing Letters 2007,14(3);189-192.
  • 7DUAN Fei,ZHANG Yu-jin. A highly effective impulse noisedetection algorithm for switching median filters [J]. IEEESignal Processing Letters,2010,17(7) :647-650.
  • 8Toh K K V,lsa N A M. Noise adaptive fuzzy switching me-dian filter for salt-and-pepper noise reduction [J]. IEEESignal Processing Letters,2010,17(3) :281-284.
  • 9HORNG Shi-jinn, HSU Ling-yuan, LI Tian-rui, et al. UsingSorted Switching Median Filter to remove high-densityimpulse noises[J]. Journal of Visual Communication andImage Representation,2013,24(7):956-967.
  • 10Ibrahim H,Kong N S P,Foo T F. Simple adaptive medianfilter for the removal of impulse noise from highly corrup-ted images[J]. IEEE Transactions OnConsumer Electron-ics,2008,54(4):1920-1927.

引证文献4

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部