期刊文献+

改进的F-X域EMD去噪技术及分布式并行实现 被引量:4

Technology of De-noising by Improved EMD in the F-X Domain and Implementation of Distributed Parallel Algorithm
下载PDF
导出
摘要 在地震数据处理领域,较高的计算效率及较好的处理效果一直是地球物理工作者追求的目标。介绍了改进的F-X域(频率-空间域)经验模态分解(Empirical Mode Decomposition,EMD)方法,首先将地震信号转换到F-X域后分解成一系列固有模态函数(Intrinsic Mode Functions,IMF),然后通过小波阈值滤波对固有模态函数除第一个分量之外的其他分量进行滤波处理来达到去噪目的。此外,为解决改进后的F-X域EMD去噪方法计算效率问题,提出了分布式并行算法,兼顾了运算效率与计算精度。数值模拟结果表明,与F-X域预测滤波技术相比,改进后的F-X域EMD去噪方法可以更加有效地衰减随机噪声和压制线性干扰;最后将该方法应用于实际地震数据处理,进一步验证了该方法的有效性和优越性。 For seismic data processing,improving calculation efficiency and seeking well treatment effect were the constant goals of geophysicists.The improved empirical mode decomposition(EMD) in F-X domain(F-X-EMD) was mainly introduced for noise suppression.Firstly,the seismic signals were decomposed into a series of intrinsic mode functions(IMF) after they were transferred into F-X domain removing the first component,other components of IMF were filtered by wavelet threshold filtering for noise attenuation.Furthermore,in order to perfect the calculating efficiency of improved F-X-EMD,the distributed parallel algorithm with higher computational efficiency and accuracy was presented.The numerical simulation results show that compared with prediction of filtering in F-X domain,the improved F-X-EMD is more effective in random noise attenuation and coherent noise suppression.Finally,the real seismic data results show that the new method has effectiveness and superiority in seismic data processing analysis.
出处 《石油天然气学报》 CAS CSCD 2012年第6期61-64,166,共4页 Journal of Oil and Gas Technology
基金 国家科技重大专项(2011ZX05024-001-01) 国家自然科学基金项目(41140033)
关键词 F-X域EMD IMF 小波阈值去噪 分布式并行 随机噪声 线性干扰 F-X-EMD IMF wavelet threshold filtering distributed parallel algorithm random noise linear interference
  • 相关文献

参考文献7

  • 1Huang N E, Shen Z, Long S R, et al. The empirical mode deeomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis EJ The RoyalSociety, 1998, 454 (1971): 903995.
  • 2Huang N E, Wu M C, l.ong S R, et al. A confidence limit for the empirical mode decomposition and hilbert spectral analysis J] . Pro- ceedings of the Royal Soeiety of London, 2003, 459 (2037) : 2317--2345.
  • 3Abdel O B, Jean-Christophe C. EMD-Based Signal Filtering [J] . IEEE Transactions on Instrumentation and Measurement, 2007. 56 (6): 21962202.
  • 4Bekara M, Baan M. F-X Noise Attenuation by Empirical Mode Decomposition A] . 70th EAGE Conference >- Exhibition [C3 . Rome, 2008-06-9 12.
  • 5Bekara M, Baan M. Random and coherent noise attenuation by empirical mode decomposition I-J] . Geophysics, 2009, 74 (5) : 89 98.
  • 6Luszczek P. Enhancing multieore system performance using parallel computing with MATLAB [J] . MATLAB Digest, 2008, 17 (5) : I 7.
  • 7Sharma G, Martin J. MATLAB: A language for parallel computing [J] . Int J of Parallel Prog, 2009, 37 (1): 336.

同被引文献47

  • 1国九英,周兴元,杨慧珠.三维f-x,y域随机噪音衰减[J].石油地球物理勘探,1995,30(2):207-215. 被引量:37
  • 2罗省贤,李录明.几种叠前去噪方法[J].石油地球物理勘探,1997,32(3):411-417. 被引量:14
  • 3李亚峻,李月,杨宝俊,高颖.SVD与小波变换相结合抑制面波与随机噪声[J].计算机工程与应用,2007,43(31):182-184. 被引量:10
  • 4Holland J H. Adap ration in natural and artificial systems[M]. Ann Arbor.. University of Michigan Press, 1975.
  • 5Donoho D L, Johnstone I M. Ideal spatial adaptation by wavelet shrinkage [J] Biometrika, 1994, 81 (3) .. 425-455.
  • 6李树钰.改进的小波阈值去噪方法及其在MATLAB中的仿真[J].噪声与震动控制,2010(2):121123.
  • 7吴美璇.基于小波的图像阈值去噪方法[D].重庆:重庆大学,2012.
  • 8James A. Cadzow.Signal enhancement. A composite property mapping algorithm. IEEE Trans. Acoust. Speech Signal Process . 1988
  • 9Trickett,Stewart R.F-xy eigenimage noise suppression. Geophysics . 2003
  • 10Stewart R.T.et al.F-x eigenimage noise suppression. SEG Expanded Abstracts . 2002

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部