期刊文献+

暴发规模和持续时间对CUSUM预警模型效能的影响 被引量:6

Effect of magnitude and duration on the performance of Cumulative Sum
原文传递
导出
摘要 采用数据模拟方法,在一段服从Poisson分布的数据序列中插入11个不同暴发规模、不同持续时间的暴发事件,研究暴发规模和持续时间对CUSUM(CumulativeSum)预警模型效能的影响。结果发现,在现有模拟条件下,灵敏度为9.1%-100.0%,特异度≥98.6%;灵敏度与暴发规模有明显的关系,暴发强度越大,灵敏度越高,而暴发持续时间并不影响灵敏度;灵敏度达到100.0%,暴发规模需≥2.6;暴发规模越大,滞后时间越短;当暴发规模≥1.8时,滞后时间控制在〈1d。可见CUSUM预警模型的预警效能受暴发规模的影响,与暴发持续时间关系不明显。该模型对规模≥2.4的暴发具有较好的探测能力。 To explore the effect of magnitude and duration on the performance of Cumulative Sum (CUSUM), with simulation method used on the subject after the insertion of 11 outbreak events into baseline data with Poisson distribution. Sensitivity fluctuated from 9.1% to 100.0% with specificities higher than 98.6%. Sensitivity was significantly correlated with magnitude, and increased along with the increase of magnitude. However, no significant correlation was observed between sensitivity and duration. A magnitude which was at least 2.6 times higher than that of the mean daily baseline could result in the sensitivity of 100.0%. Time-lag would be improved along with the increase of magnitude. Time between onset and detection of an outbreak was no longer than one day when magnitude was more than 1.8 of the mean daily baseline. In summary, the performance of CUSUM was influenced by magnitude, but not by duration. CUSUM had the advantage of good time-lag and high sensitivity when the outbreak magnitude was more than 2.4 time over the baseline data.
出处 《中华流行病学杂志》 CAS CSCD 北大核心 2012年第6期617-621,共5页 Chinese Journal of Epidemiology
基金 基金项目:“十一五”国家科技支撑计划(2006BAK01A13,2008BA156802) 中国一世界卫生组织合作项目(WPCHN0801617,WPCHN1002405) 国家科技重大专项(2009ZX10004-201)
关键词 暴发规模 暴发持续时间 累积和预警模型 预警效能 数据模拟技术 Outbreak magnitude Outbreak duration Cumulative Sum Performance ofalert Simulation method
  • 相关文献

参考文献18

  • 1Kleinman K, Lazarus R, Platt R. A generalized linear mixed models approach for detecting incident clusters of disease in small areas, with an application to biological terrorism. Am J Epidemiol, 2004,159 (3) : 217-224.
  • 2Mostashari F, Fine A, Das D, et al. Use of ambulance dispatch data as an early warning system for communitywide influenza- like illness, New York city. J Urban Health, 2003, 80 (2 Suppl 1 ) : i43-49.
  • 3Hogan WR, Tsui FC, Ivanov O, et al. Detection of pediatric respiratory and diarrheal outbreaks from sales of over- the-counter electrolyte products. J Am Med Inform Assoc, 2003, 10(6) : 555-562.
  • 4Best N, Richardson S, Thomson A. A comparison of Bayesian spatial models for disease mapping. Stat Methods Med Res, 2005,14( 1 ) : 35-59.
  • 5SPE. Continuous Inspection Schemes. Biometrika, 1954,41 : 100- 115.
  • 6Wong W, Moore AW. Classical Time-Series Methods for Biosurveillance Handbook of Biosurveillance//Wagner MM, Moore AW, Aryel RM. London: Elsevier Academic Press, 2006 : 217-234.
  • 7David L. Outbreak detection through automated surveillance: a review of the determinants of detection. J Biomed Inform, 2007, 40: 370-379.
  • 8Wang L, Ramoni MF, Mandl KD, et al. Factors affecting automated syndromic surveillance. Artif Intell Med, 2005,34(3 ) : 269-278.
  • 9Li ZJ, Lai SJ, David L, et al. Adjusting outbreak detection algorithms for surveillance during epidemic and non-epidemic periods. J Am Med Inform Assoc. doi: 10.1136/amiajnl-2011- 000126.
  • 10Mostashari F, Kulldor M, Hartman JJ, et al. Dead bird clusters as an early warning system for West Nile virus activity. Emerg Infect Dis, 2003,9 (6) : 641-646.

同被引文献40

引证文献6

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部