期刊文献+

基于二分法量子可逆逻辑电路综合 被引量:6

Qubits Reversible Logic Circuits Synthesis Based on Bisection Method
下载PDF
导出
摘要 为了能以较小的代价自动高效地构造量子可逆逻辑电路,提出了一种新颖的量子可逆逻辑电路综合方法.该方法通过线拓扑变换和对换演算,利用递归思想,将n量子电路综合问题转换成单量子电路综合问题,从而完成电路综合,经过局部优化生成最终电路.该算法综合出全部的3变量可逆函数,未优化时平均需6.41个EGT门,优化后平均只需5.22个EGT门;理论分析表明,综合n量子电路最多只需要n2n-1个EGT门.与同类算法相比,综合电路所用可逆门的数量大幅减少.同时该算法还避免了时空复杂度太大的问题,便于经典计算机实现. In order to efficiently automatically construct quantum reversible logic circuits with low cost, a novel method for quantum circuit's synthesis is proposed. Through the line topology transformation and truth table permutation,it converts an n-qubit circuit synthesis problem into single quantum circuit synthesis using traditional recursive thought. Then directly generate relevant cir- cuit. After optimization, the quantum reversible logic circuit is synthesized finally. All 3-qubit reversible logic circuits have been syn- thesized by this method. The average number of EGT gates is only 6.41, and the number is down to 5.22 after optimization. Experi- mental results show that the number of gates to construct reversible logic circuits is less than other methods. For any n-qubit binary logic function,the number of EGT gates is less than n2n- 1.Meanwhile,it voids the exponential nature of the memory or run-time complexity, and is very simple to implement in classical computer.
出处 《电子学报》 EI CAS CSCD 北大核心 2012年第5期1045-1049,共5页 Acta Electronica Sinica
基金 国家自然科学基金(No.60873101 No.61170321)
关键词 可逆逻辑 电路综合 多量子 二分法 量子计算 reversible logic circuit's synthesis multi-qubits bisection method quantum computing
  • 相关文献

参考文献13

  • 1Toffoli T. Reversible Compufing[M]. New York: Springer, 1980.632 - 644.
  • 2Song X Y, Yang G W, Perkowski M,et al. Algebraic character- istics of reversible gates[ J]. Theory of Computing Systems, 2004,37(2) :311 - 319.
  • 3Iwama K, Kambayashi Y, Yamashita S. Transformation rules for designing CNOT-based quantum circuits [ A ]. Proceedings of Design Automation Conference [ C ]. New Orleans, LA, USA,2002,28(4) :419 - 425.
  • 4Miller D M, Maslov D, Gueck G W. Spectral and two-place de- composition techniques in reversible logic [ A ]. Proceedings of the 45th IEEE International Midwest Symposium on Circuits and Systems[ C]. Tulsa, Ar, USA, 2002.493 - 496.
  • 5Miller D M, Maslov D,Dueck G W.A tranSsformation based al- gorithm for reversible logic synthesis [ A ]. Proceedings of the 40th Design Automation Conference[ C ]. Anaheim, CA, USA, 2003.318 - 323.
  • 6Maslov D,Dueck G W, Miller D M. Toffoli network synthesis with templates[ J]. IEEE Trans on Circuits and Systems-I, 2005,24(6) :807 - 817.
  • 7Li W Q, Chen H W, Li Z Q. Application of semi-template in reversible logic circuit[ A]. Proceedings of the 11 th Internation- al Conference on Computer Supported Cooperative Work in De- sign[ C ]. Melbourne, Australia, 2007.155 - 161.
  • 8Shende V V, Prasad A K, Markov I L, et al. Reversible logic circuit synthesis [ A ]. Proceedings of the ACM/IEEE Interna- tional Conference on Computer-Aided Design[C]. San Jose, Califomia,2002. 125 - 132.
  • 9Shende V V, Prasad A K, Markov I L, et al. Synthesis of re- versible logic circuits[ J] .IEEE Trans on Circuits and Systems- I ,2003,22(6) :723 - 729.
  • 10Yang Guowu, Song Xiaoyu, William N, et al. Group theory based synthesis of binary reversible circuits [ A ]. Proceedings of the 3rd International Conference on Theory and Applica- tions of Models of Computation[C]. Beijing, China, 2006.365 - 374.

同被引文献76

  • 1马皓,毛兴云,徐德鸿.基于混杂系统模型的DC/DC电力电子电路参数辨识[J].中国电机工程学报,2005,25(10):50-54. 被引量:28
  • 2R Feynman. Quantum mechanical computers[ J]. Optic News, 1986,16(6) : 1120.
  • 3E Fredkin, T Toffoli. Conservative logic[ J]. International Jour- nal of Theoretical Physics, 1982,21(3) :219 - 253.
  • 4D Maslov, G W Dueck, et al. Toffoli network synthesis with templates[ J ]. IEEE Transactions on CAD, 2005,24 (6) : 807 - 817.
  • 5P Gupta,A Agrawa,N K Jha.An algorithm for synthesis of re- versible logic circuits[ J ]. IEEE Transactiom on CAD, 2006,25 (11) :807- 817.
  • 6V V Shende, A K Prasad, et al. Synthesis of reversible logic circuits[ J ]. IF.EF. Transactions on CAD, 2003,22 (6) : 723 - 729.
  • 7G W Yang,X Song, et al. Fast synthesis of exact minimal re- versible circuits using group theory[ A]. Proceedings of the 10th Asia and South Pacific Design Automation Conference [ C ]. Shanghai, China: IEEE Press, 2005.18 - 21.
  • 8W N N Hung,X Song, G W Yang, J Yang,M Perkowski. Opti- mal synthesis of multiple output boolean functions using a set of quantum gates by symbolic reach ability analysis [ J ]. IIR.EE Transactions on CAD,2006,25(9) : 1652- 1663.
  • 9G W Yang, W N N Hung, X Song, M Perkowski. Exact synthe- sis of 3-qubit quantum circuits from non-binary quantum gates using multiple-valued logic and group theory[ A ]. Proceengs of DATE 2005[ C]. Munich, Germany: IEEE Press, 2005. 434 - 435.
  • 10D Maslov, D M Miller. Comparison of the cost metrics through investigation of the relation between optimal NCV and optimal NCT three-qubit reversible circuits [ J ]. IET Computers & Digital Techniques, 2007,1 (2) :98 - 104.

引证文献6

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部