期刊文献+

充电站内电动汽车有序充电策略 被引量:137

Coordinated Charging of Plug-in Electric Vehicles in Charging Stations
下载PDF
导出
摘要 以充电站运营收益最大化为目标,以配电变压器容量及最大限度满足用户充电需求为约束条件,建立了充电站内电动汽车有序充电的数学模型。根据用户充电规律,采用蒙特卡洛模拟法模拟用户充电需求,对电动汽车在有序充电和无序充电2种情形下充电站运行的经济效益及配电变压器负载情况进行了仿真计算和分析。研究结果表明,通过动态响应电网分时电价,有序充电控制方法可显著提高电动汽车充电站的经济效益,并具备很高的计算效率。同时,由于相对便宜电价的激励,夜间采用有序充电方式也可能使大量的电动汽车集中充电而导致另外一个用电高峰的出现。 Under the constraints of distribution transformer capacity and customer charging needs, a plug-in electric vehicle coordinated charging model in charging stations is proposed to maximize the overall economic benefits of charging stations. Monte Carlo simulation method is utilized to generate the charging needs of customers based on actual customers' charging profiles. The economic benefits of charging stations and distribution transformer load scenarios are simulated under uncoordinated and coordinated charging modes correspondingly. Simulation results have indicated that by responding the time- of-use electricity prices, the economic benefits of the charging stations can be significantly improved. On the other hand, due to the relatively cheaper off-peak electricity price at late night, using this coordinated charging strategy might introduce charging concentration and hence another peak load.
机构地区 清华大学电机系
出处 《电力系统自动化》 EI CSCD 北大核心 2012年第11期38-43,共6页 Automation of Electric Power Systems
基金 国家高技术研究发展计划(863计划)资助项目(2011AA05A110) 国家自然科学基金资助项目(51107060) 质检公益科研专项项目(201010232) 国家电网公司科技项目 已申请国家发明专利(专利申请号:CN201110023668.4)~~
关键词 电动汽车 充电站 有序充电 经济效益 蒙特卡洛模拟法 plug-in electric vehicle charging station coordinated charging economic benefits Monte Carlo simulation
  • 相关文献

参考文献4

二级参考文献41

  • 1EL HAWARY M E, CHRISTENSEN G S. Optimal economic operation of electric power system. New York, NY, USA: Academic Press, 1979.
  • 2KEMPTON W, LETENDRE S. Electric vehicles as a new power source for electric utilities. Transportation Research: Part D, 1997, 2(3): 157-175.
  • 3KEMPTON W, TOMIC J. Vehicle-to-grid power implementation: from stabilizing the grid to supporting largescale renewable energy. Journal of Power Sources, 2005, 144(1) : 280-294.
  • 4GRANVILLE S. Optimal reactive dispatch through interior point methods. IEEE Trans on Power Systems, 1994, 9 (1): 136-146.
  • 5CHEN C L, WANG S C. Branch-and-bound scheduling for thermal generating units. IEEE Trans on Energy Conversion, 1993, 8(2): 184-189.
  • 6YANG H T, YANG P C, HUANG C L. Evolutionary programming based economic dispatch for units with nonsmooth fuel cost functions. IEEE Trans on Power Systems, 1996, 11(1) : 112-118.
  • 7BAKIRTZIS A, PETRIDIS V, KAZARLIS S. Genetic algorithm solution to the economic dispatch problem. IEE Proceedings: Generation, Transmission and Distribution, 1994, 141(4) : 377-382.
  • 8SELVAKUMAR A I, THANUSHKODI K. A new particle swarm optimization solution to noneonvex economic dispatch problems. IEEE Trans on Power Systems, 2007, 22 (1): 42-51.
  • 9CHEN C L. Simulated annealing-based optimal wind-thermal coordination scheduling. IET Generation, Transmission and Distribution, 2007, 1(3): 447-455.
  • 10COEI.HO L S, MARIANI V C. Combining of chaotic differential evolution and quadratic programming for economic dispatch optimization with valve point effect. IEEE Trans on Power Systems, 2006, 21(2): 989-996.

共引文献535

同被引文献1163

引证文献137

二级引证文献1812

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部