期刊文献+

一种调整簇阀值的加速聚类分析算法及其应用 被引量:1

Accelerated Clustering Analysis Algorithm Based on Cluster Threshold-Adjusted and Its Application
下载PDF
导出
摘要 针对航运信息中大样本聚类问题,根据k-means聚类过程中大部分簇的调整发生在初始迭代阶段的特性,提出了一种调整簇阀值的加速聚类方法,并对该算法进行实例测试,实验结果证明了该方法在满足原有的聚类精度的基础上,减少了聚类的计算量。本文将该方法应用到船舶航线设计中。 Considering most adjustments of clusters happen in the initial stage of iteration in the clustering process of k-means algorithm, an accelerated clustering analysis algorithm is proposed to perform the clustering for large amounts of samples based on cluster threshold adjusted. Experiments prove that the improved algorithm can obtain the good clustering result, and accelerate the speed of clustering. Finally, an application of clustering is given for designing routes from the marine database.
出处 《数据采集与处理》 CSCD 北大核心 2012年第3期287-293,共7页 Journal of Data Acquisition and Processing
基金 国家交通部科研基金(2009-329-810-030)资助项目 国家自然科学基金(60804064)资助项目 上海市教委科研创新基金(11YZ139)资助项目 上海海事大学科研基金(20120103)资助项目
关键词 数据挖掘 聚类分析 簇阀值 计算复杂度 data mining clustering analysis cluster threshold computational complexity
  • 相关文献

参考文献18

  • 1汤天浩.船舶智能化信息系统的探讨[J].上海造船,2007(3):29-31. 被引量:9
  • 2葛泉波,管冰蕾,文成林,汤天浩.网络数据融合技术在MITS中的应用研究[J].中国航海,2007,30(4):37-43. 被引量:5
  • 3元海英,刘福海,张可.我国智能交通系统(ITS)体系框架开发的关键技术[J].交通科技与经济,2008,10(4):88-90. 被引量:3
  • 4Sebastien G, Younes B. Selection of clusters number and features subset during a two-levels clustering task[C]//Proceeding of the 8th International Con- ference Artificial Intelligence and Soft Computing. Zakopane, Poland: [s. n. 7, 2006:28-33.
  • 5Macqueen J. Some methods for classification and analysis of multivariate observations[C]//Proceed- ing of 5th Berkeley Symposium on Mathematical Statistics and Probability. [S. 1.3 : University of Cal- ifornia Press, 1967:281-291.
  • 6Cabanes G, Bennani Y. A simultaneous two-level clustering algorithm for automatic model selection, machine learning and applications [C]//Sixth Inter- national Conference on Machine Learning and Appli- cations. Cincinnati, Ohio, USA.. IEEE Computer Society Press, 2007 : 316-321.
  • 7Meila M. Comparing clusterings--an information based distance [J]. Journal of Multivar Analysis, 2007,98(5), 873-895.
  • 8AI-Zoubi Mohrd Belal, Amiad H, Ammar H, et al. New efficient strategy to accelerate k-means cluster- ing algorithm[J]. American Journal of Applied Sci- ences, 2008,5(9) : 1247-1250.
  • 9Tan Zhenhua, Chang Guiran, Cheng Wei, et al. An improved peer-to-peer routing algorithm K-CSSP based on communication history clustered by k- means[C]//Ninth International Conference on Hy- brid Intelligent Systems. Shenyang, China: [s. n. ], 2009:381-385.
  • 10Zhang Zhenjie, Yang Yintung. Continuous k-means monitoring over moving objects[J]. Knowledge and Data Engineering, IEEE Transactions, 2008,20 (9) : 1025-1216.

二级参考文献31

共引文献35

同被引文献11

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部