期刊文献+

基于分子动力学模拟的改进混合蛙跳算法 被引量:9

Improved Shuffled Frog Leaping Algorithm Based on Molecular Dynamics Simulations
下载PDF
导出
摘要 针对基本的混合蛙跳算法(Shuffled frog leaping algorithm,SFLA)后期搜索速度变慢,容易陷入局部最优解的缺点,借鉴分子动力学(Molecular dynamics,MD)模拟的思想,提出一种基于分子动力学模拟的改进的混合蛙跳算法。该算法将种群中的粒子等效成分子,并提出一种新的分子间作用力计算方法来代替两体间经典的Lennard-Jones作用力计算方法,利用Velocity-Verlet算法和高斯变异算子代替基本混合蛙跳算法的更新策略,有效地平衡了种群的多样性和搜索的高效性。高维多峰函数测试的结果表明,基于分子动力学模拟的改进混合蛙跳算法能提高算法后期跳出局部极值的能力,全局寻优能力明显优于基本的混合蛙跳算法。 To overcome the defects of shuffled frog leaping algorithm (SFLA) such as slow searching speed in the late evolution and easily trapping into local extremum, an improved shuffled frog leaping algorithm (ISFLA) based on the basic ideas of molecular dynamics (MD) simulations is presented with the population being regarded as a molecular system. A new intermolecular force is proposed instead of the classic two-body Lennard-Jones force and Velocity-Verier algorithm and Gaussian mutation are adopted to replace the original SFLA update strategy. So the population diversity and search efficiency can be effectively balanced. Test results on high-dimensional and multi-modal optimization problems indicate that ISFLA improves the capacity of escaping from local maximum and the global searching performance is superior to SFLA.
出处 《数据采集与处理》 CSCD 北大核心 2012年第3期327-332,共6页 Journal of Data Acquisition and Processing
基金 国家自然科学基金(60872073 60975017 51075068)资助项目
关键词 分子动力学 混合蛙跳算法 分子间作用力 Velocity—Verlet算法 高斯变异 molecular dynamics (MD) shuffled frog leaping algorithm (SFLA) intermoleeular force velocity-verlet algorithm Gaussian mutation
  • 相关文献

参考文献7

二级参考文献45

共引文献163

同被引文献85

  • 1EUSUFF M M, LANSEY K E. Optimization of water distribution network design using the shuffled frog leaping algorithm[J]. Water Resources Planning and Management,2003,129 ( 3 ) : 210- 225.
  • 2AMIRI B, FATHIAN M, MAROOSI A. Application of shuffled frog leaping algorithm on clustering [ J ]. The International Journal of Advanced Manufacturinq Technology,2009,45 ( 1-2 ) : 199- 209.
  • 3ALIREZA R V, ALI H M. Solving a bicriteria permutation flow shop problem using shuffled frog-leaping algorithm [ J]. Soft Computing, 2008,12 (5) :435- 452.
  • 4ELBELTAGI E, HEGAZY T, GRIERSON D. A modified shuffled frogleaping optimization algorithm applications to project management [ J J. Structure and Infrastructure Engineering,2007,3(1) :53-60.
  • 5RAHIMI-VAHED A, MIRZAEI A H. A hybrid multi-objective shuffled frog-leaping algorithm for a mixed model assembly line sequencing problem[ J]. Computers and Industrial Engineering, 2007,53 (4) : 642-666.
  • 6ZHANG Xun-cai, HU Xue-mei, CUI Guang-zhao, et al. An improved shuffled frog leaping algorithm with cognitive behavior [ C ]// Proc of the 7th World Congress on Intelligent Control and Automation. New York: IEEE Press, 2008: 6197-6202.
  • 7ELBCTAGI E, HEGAZY T, GRIEMON D. Comparison among five evolutionary-based optimization algorithms [ J ]. Advanced Engineering Informatics,2005,19( 1 ) :43-53.
  • 8HUYNH T H. A modified shuffled frog leaping algorithm for optimal tuning of multivariable PID controllers [ C ]//Proc of IEEE International Conference on Industrial Technology. New York: IEEE Press, 2008 : 1-6.
  • 9汤可宗,杨静宇.遗传算法与粒子群优化算法的改进及应用研究[D].南京:南京理工大学,2011.
  • 10Eusuff M M,Lansey K E.Optimization of water distribution network deign using the shuffled frog leaoing algiridhm[J].Water Resources Planning and Management,2003,129(3):210-225.

引证文献9

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部