期刊文献+

加筋球壳结构稳定性及其优化研究 被引量:8

BUCKLING AND OPTIMIZATION RESEARCH OF A RIBBED SPHERICAL HULL
下载PDF
导出
摘要 采用非弹性理论修正与有限元计算相结合的方法,进行加筋球壳结构的稳定性分析,得到加筋球壳结构的实际失稳压力;并通过改变球壳厚度、加强筋尺寸、加强筋布置形式等讨论球壳厚度、加强形式对加筋球壳结构稳定性的影响;同时考虑加筋球壳结构其他力学性能要求,进行加筋球壳结构的稳定性优化设计,给出加筋球壳结构合理的设计形式。研究表明,球壳厚度、加强形式对加筋球壳结构的稳定性有较大影响,增加球壳厚度、减小加强筋跨距可有效提高其实际失稳压力,改善其稳定性。 Based on combination of non-elastic modification theory and finite element method, buckling analysis of a ribbed spherical bullhead is conducted and the critical buckling pressure is thus obtained. Influence of thickness of spherical hull and influence of reinforcement of stiffeners on buckling of the ribbed spherical hull are discussed by alternating thickenss of spherical hull and reinforcement of stiffeners. Considering other mechanical requirements of spherical bulkhead, buckling optimization is further deployed. Optimal reinforcement form of the ribbed spherical hull is thus presented. Study shows that thickness of spherical hull and forms of reinforcement have significant influence on the critical bulking pressure of spherical ribbed bulkhead. Increasing thickness of spherical hull, reducing distance between stiffeners could increase the critical buckling pressure of the ribbed spherical hull.
出处 《机械强度》 CAS CSCD 北大核心 2012年第3期342-350,共9页 Journal of Mechanical Strength
关键词 加筋球壳结构 失稳压力 稳定性 加强形式 优化设计 Ribbed spherical hull Critical buckling pressure Buckling Reinforcement Optimization
  • 相关文献

参考文献12

二级参考文献25

  • 1梁斌,乐金朝.弹性圆柱壳的稳定性优化设计[J].机械强度,2002,24(3):463-465. 被引量:16
  • 2常福清.波纹腹板 H 型钢梁腹板的屈曲强度[J].机械强度,1997,19(1):42-44. 被引量:24
  • 3R弗朗克 布什毕.载人潜水器[M].北京:海洋出版社,1982..
  • 4李长春 施德培.潜水器结构强度[M].上海:上海交通大学出版社,1991..
  • 5Raymond H Myers, Douglas C Montgomery, Geoferry Vining G, et al. Response surface methodology: a retrospective and literature survey[J]. Journal of Quality Technology, 2004, 36(1): 53-77.
  • 6Ted Belytschko, Wing Kam Liu, Brian Moran. Nonlinear finite dements for continua and structure[ M]. London: John Wiley & Sons Ltd., 2000: 57-60.
  • 7Marco Gerini C, Brain G Falzon. The reliability of the are-length method in the analysis of mode-jumping problems: AIAA 2003-1621 [ R]. Norfolk, Virginia: American Institute of Aeronautics and Astronautics, Inc., 2003:1-10.
  • 8Victor M P rez, John E Renaud, Layne T Wason. Adaptive experimental design for construction of response surface approximation: AIAA-2001- 1622[ R]. Seattle, Washington: American Institute of Aeronautics and Astronautics, Inc., 2001:1-12.
  • 9Chen W F, Lui E M. Structural stability-theory and implementation. New York: Elsevier, 1987.
  • 10Yamaki N. Elastic stability of circular cylindrical shell. Amsterdam: NorthHolland, 1984.

共引文献131

同被引文献68

引证文献8

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部