期刊文献+

基于模糊C均值聚类的纺织品印花图像分割 被引量:7

Textile print image segmentation based on FCM
下载PDF
导出
摘要 针对纺织品印花精度检测的关键技术问题,主要围绕纺织品印花图像的有效分割展开研究工作,提出了基于距离修正和隶属度修正的FCM算法。为了确保FCM算法的有效性和精确性,对其参数的选取和算法结构进行了深入的研究,结合参数的自适应初始化方法和FCM算法的修正方法,给出该算法对纺织品印花图像的分割效果图。结果表明,该算法对纺织品印花图像有良好的分割效果,并且对由光和织物纹理引起的干扰有一定的抑制作用。 Focusing on the key issue in textile print precision measurement,the paper studies an effective method for image segmentation of textile print pattern.FCM algorithm is proposed,which is based on distance correcting and subordinative degree correcting.In order to ensure the effectiveness and accuracy of FCM algorithm,deep study of the parameter selection and algorithm structure is conducted.The self-adaptive parameters initialization method and FCM algorithm correction method are investigated by experiments.Finally,the results of image segmentation of textile print pattern by using this algorithm are demonstrated.The experimental results show that the algorithm has good effect on image segmentation of textile print pattern,and has certain inhibition effect on the interference caused by light and fabric texture.
出处 《纺织学报》 EI CAS CSCD 北大核心 2012年第6期97-100,共4页 Journal of Textile Research
基金 陕西省科技厅项目(2010K09-17) 陕西省教育厅项目(11JK0910)
关键词 纺织品印花图像 图像分割 FCM 自适应参数 textile print pattern image image segmentation FCM self-adaptive parameter
  • 相关文献

参考文献11

  • 1SULAIMAN S N, ISA N A M. Adaptive fuzzy-K-means clustering algorithm for image segmentation [ J ]. IEEE Transactions on Consumer Electronics, 2010,56 (4) : 2661 - 2668.
  • 2诸葛振荣,徐敏,刘洋飞.基于Mean Shift的织物图像分割算法[J].纺织学报,2007,28(10):108-111. 被引量:16
  • 3BEZDEK JC. Pattern recognition with fuzzy objective function algorithms [ J ]. Plenum Press, New York, 1981.
  • 4SOWMYA B, BHATTACHARYA S. Colour image segmentation using fuzzy clustering techniques [J]. IEEE Indicon 2005 Conference, Chennai, India, 2005, 11 - 13:41 -45.
  • 5CHEN S, ZHANG D Q. Robust image segmentation using FCM with spatial constraints based on new kernel- induced distance metric [ J]. IEEE Trans on System. Man and Cybernetics-Part B, 2004, 34:1907 -1916.
  • 6ZHANG D Q, CHEN S. A novel kernelised fuzzy C-means algorithms with application in medical image segmentation [ J ]. Artificial Intelligence in Medicine, 2004,32:37 - 50.
  • 7CAI W L, CI-IEN S, ZHANG D Q. Fast and robust fuzzy C-means clustering algorithms incorporation local information for image segmentation [J]. Pattern Recognition, 2007,40 : 825 - 838.
  • 8PAL N R, BEZDEK J C. On clustering validity for the fuzzy C-means model [ J ]. IEEE Fuzzy Systems, 1995, 3(3) : 370 -379.
  • 9XIE X L, BENI G A. A validity measure for fuzzy clustering [J]. IEEE PAMI,1991,13 :841 - 847.
  • 10LI Yang, YU Fusheng. A new validity function for fuzzy clustering [ J ]. Computational Intelligence and Natural Computing,2009, ( 1 ) : 462 -465.

二级参考文献10

  • 1殷海明,张明敏,潘志庚.一种织物彩色图像的分割算法[J].计算机应用,2005,25(4):966-967. 被引量:5
  • 2文志强,蔡自兴.Mean Shift算法的收敛性分析[J].软件学报,2007,18(2):205-212. 被引量:48
  • 3Cheng HD,Jiang XH,Sun Y,etal. Color image segmentation: advance and prospects[J]. Pattern Recognition.2001,34(12): 2259-2281.
  • 4高新波.糊聚类分析及其应用[M]西安:西安电子科技大学出版社.2004.
  • 5Fukunaga K,Hometler L D.The estimation of the gradient of a density function,with applications in pattern recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1975,21:32-40.
  • 6Cheng Yizong.Mean Shift,mode seeking,and clustering[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1995,(8):790-799.
  • 7Comaniciu D,Meer P.Robust analysis of feature spaces:color image segmentation[C]//Proceedings of the 1997 Conference on Computer Vision and Pattern Recognition.San Juan:IEEE Computer Society,1997:750-755.
  • 8Comaniciu D,Ramesh V,Meer P.Real-time.tracking of non-rigid objects using mean shift[J].Computer Vision and Pattern Recognition,2000,4(2):142-149.
  • 9邹超,汪秉文,孙志刚.基于机器视觉的织物疵点检测方法综述[J].天津工业大学学报,2009,28(2):78-82. 被引量:20
  • 10张新峰,沈兰荪.图像分割技术研究[J].电路与系统学报,2004,9(2):92-99. 被引量:26

共引文献15

同被引文献60

引证文献7

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部